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SUMMARY

Endocytosis is critical for cellular physiology and
thus is highly regulated. To identify regulatory inter-
actions controlling the endocytic membrane system,
we conducted 13 RNAi screens on multiple endo-
cytic activities and their downstream organelles.
Combinedwith image analysis of thousands of single
cells per perturbation and their cell-to-cell variability,
this created a high-quality and cross-comparable
quantitative data set. Unbiased analysis revealed
emergent properties of the endocytic membrane
system and how its complexity evolved and distinct
programs of regulatory control that coregulate spe-
cific subsets of endocytic uptake routes and organ-
elle abundances. We show that these subset effects
allow the mapping of functional regulatory interac-
tions and their interaction motifs between kinases,
membrane-trafficking machinery, and the cytoskel-
eton at a large scale, some of which we further char-
acterize. Our work presents a powerful approach to
identify regulatory interactions in complex cellular
systems from parallel single-gene or double-gene
perturbation screens in human cells and yeast.

INTRODUCTION

Endocytosismediates nutrient uptake, remodels the cell surface,

and is the prime portal for pathogen entry (Conner and Schmid,

2003). It comprises multiple mechanisms to internalize cell-sur-

face components and extracellular fluid (Doherty andMcMahon,

2009) and various downstream organelles to dynamically pro-

cess or recycle the internalized material (Maxfield and McGraw,

2004). Because actively growing cells in tissue culture internalize

and recycle more than 200% of their entire surface area every

hour (Steinman et al., 1983), endocytosis has a major role in

cell signaling, cell-cell communication, and interactions between

cells and their environment (Scita and Di Fiore, 2010). Given its

essential role, endocytosis is itself subject to extensive and com-

plex regulation (Liberali et al., 2008), whose scope has been re-

vealed by a number of large-scale efforts to annotate human
gene function to endocytosis (Collinet et al., 2010; Galvez

et al., 2007; Kozik et al., 2013; Pelkmans et al., 2005). However,

no systematic study has been undertaken to compare the regu-

lation of different endocytic activities and organelles, andmost of

the signaling networks that control them remain unknown. It is

unclear whether patterns of coordination exist. Moreover,

large-scale maps of functional interactions between molecular

components of different endocytic machineries and cellular

signaling do not exist.

Genetic perturbation screens combined with data-driven

statistics to infer functional genetic interactions are powerful

methods for the unbiased, large-scale, and quantitative analysis

of molecular complexes. These interactions can be inferred from

large sets of single gene perturbation screens with a quantitative

readout (Hillenmeyer et al., 2008; Steinmetz et al., 2002) and from

double-gene perturbation screens to measure synthetic interac-

tions (Costanzo et al., 2010; Schuldiner et al., 2005). However,

such approaches have thus far not been able to accurately reveal

molecular regulatory circuits involving, for instance, kinase-sub-

strate interactions, because of a poor correlation between their

perturbation effects across a large number of measurements

(Fiedler et al., 2009). In addition, in human cells, large-scale dou-

ble-gene perturbation screens suffer from poor scalability and

are technically challenging (Bassik et al., 2013; Laufer et al.,

2013; Roguev et al., 2013). Therefore, most screens have been

based on single-gene knockdowns with RNAi and thus do not

reveal functional linkages between cellular processes.

Here, we developed a quantitative approach based on parallel

RNAi screens and a statistical method to infer functional regula-

tory interactions between genes. Using this methodology, we

analyzed the loss-of-function phenotypes of 13 different, but

functionally related, endocytic activities and organelles in human

cells to infer functional interactions between genes. The set of

targeted genes covers the known molecular components of

several endocytic machineries, as well as genes involved in

signaling and the cytoskeleton. Our approach is quantitative at

the level of single cells and takes patterns of cell-to-cell vari-

ability into account to avoid sampling bias and misinterpreta-

tions due to indirect population-context effects. The acquired

data set facilitated the unbiased discovery of unknown sys-

tems-level properties that conventional approaches cannot

reveal. We find specific regulatory programs that coordinate

subsets of endocytic activities and organelle abundances
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Figure 1. Overview of the Workflow and Patterns of Cell-to-Cell Variability in the Endocytic Membrane System

(A) Example images of single cells from the 13 automated image-based assays using fluorescent cargo. Scale bars, 10 mm.

(B) Overview of the experimental and computational workflow of the RNAi screens analyzed in this study.

(C) Analysis and population context-determined patterns of cell-to-cell variability. Left column: coefficients of variation (CoV) of single-cell fluorescent cargo or

molecular marker intensities (log10-transformed mean intensity). Bootstrapped hierarchical clustering of cell-to-cell variability patterns. Intensity was calculated

per bin of the quantile multidimensional bin (QMB) model.

(D) Correction with QMB models improves the Z scores of positive controls.

(E) Accounting for indirect population-context effects leads to changes in the enrichments of functional annotation classes of hits. Bar graph shows functional

annotation classes, which become depleted (red, on the left) or enriched (blue, on the right) after QMB model correction.

See also Figure S1.
controlling the core membrane-trafficking machinery on which

these activities rely and harness subset effects in the data to

map the functional interactions between signaling, membrane

trafficking, and cytoskeletal genes underlying these regulatory

programs. We show the generality of our approach and its

applicability to other complex cellular processes by inferring

regulatory interactions from subset effects in a Saccharomyces

cerevisiae double-gene perturbation screen. Finally, we charac-

terize some of the identified functional interactions in the regula-

tion of clathrin-mediated endocytosis with automated total

internal reflection fluorescence (TIRF) time-lapse microscopy

and large-scale image analysis on genome-edited cells, further

validating the discovery approach developed in this resource.
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RESULTS

Thirteen Image-Based RNAi Screens of Endocytic
Activities and Organelles
To reveal coordinate and disparate regulation of the multiple en-

docytic pathways that converge on the endolysosomal system,

we designed 13 high-throughput image-based assays, which

measure different endocytic activities, as well as the abundance

of endosomes, lysosomes, and the Golgi complex, to which en-

docytic cargo is transported. We then performed 13 small inter-

fering RNA (siRNA) screens of a set of 1,132 genes in parallel

(Figure 1A), using pools of three siRNAs per gene (Table S1 avail-

able online). The set of selected genes encode for proteins



known or predicted to be central players in signaling networks,

represent regulators, and components of membrane-trafficking

machineries or that are involved in the regulation of cytoskeleton

dynamics (Figure S1A).

After cell and nucleus segmentation, extensive computational

image analysis was applied to quantify a multivariate set of fea-

tures in �2,500 single cells for each perturbation in each screen

(Figure 1B). By means of supervised machine learning, we

excluded �30% of cells, which were mitotic and apoptotic,

out-of-focus, and/or poorly segmented, from the data set

(Rämö et al., 2009). In addition, perturbations that led to a strong

reduction in cell viability (<150 cells/well remaining) were

completely excluded from the data set. Furthermore, because

hitlists based on multivariate and univariate intensity-based

readouts overlap for �80% (Figure S1B), and changes in

single-cell intensity measurements mean the same for each of

the 13 readouts, we used single-cell intensity measurements to

compare RNAi effects across the 13 screens and to infer func-

tional interactions.

Various experimental and statistical tests (Tables S2 and S3;

Figures S1C and S1D) demonstrate high technical reproduc-

ibility of the screens. Consistently, we obtained high validation

rates of hits found in the screens on amount of intracellular Tfn

and LAMP1 abundance in A431 cells using three independent

siRNAs from a different supplier (77% and 74%; Table S3). We

also verified that established Z- and b-score transformation of

the measurements (Boutros et al., 2006) accurately represent

the raw data, allowing us to combine all screens into a single

data set consisting of a unifying and cross-comparable quantita-

tive readout of single-cell intensities. These tests provided con-

fidence in using the whole data set as a resource for various

types of data-driven systems-level analyses. Whenever an indi-

vidual gene is explicitly mentioned, its RNAi effect has been inde-

pendently validated (Table S3).

Measuring Direct RNAi Effects at the Single-Cell Level
Improves the Data Set
Perturbation effects are usually compared on the basis of

averaging single-cell readouts, but this can in many cases be

misleading (Altschuler and Wu, 2010). One reason for this is

the poor reproducibility of single-cell distributions, leading to

inadvertent sampling bias when a few single cells are analyzed.

In addition, the silencing of many genes leads to altered proper-

ties of a cell population by interfering with cell proliferation or cell

migration, leading to changed fractions of densely and sparsely

growing cells and cells located on cell islet edges and conse-

quently changed distributions of cell sizes, morphologies, and

the extent of cell spreading (Snijder et al., 2012). Because

many activities are determined by these single-cell properties

(Snijder et al., 2009, 2012), such a perturbation will also alter

the single-cell distribution of that activity, without having directly

perturbed the activity itself.

To address this, we calculated the number of single cells that

must be sampled from a population to obtain a similar distribu-

tion of single-cell intensities in two subsamplings and found

that, on average across all screens, a sampling of 1,016 single

cells is required to achieve a reproducibility (R2) of 0.9. With an

average of 2,500 single cells measured for each perturbation in
each screen, our single-cell sampling size is thus sufficient for

the majority of perturbations. We also created statistical models

of the population context (Snijder et al., 2012) with good predic-

tive power of single-cell activities (R = 0.85 ± 0.16, median ± SD),

which revealed specific and sometimes strikingly different pat-

terns of cell-to-cell variability (Figure 1C). For instance, the

amount of intracellular LDL is higher in cells that are small and

grow at high local cell density, whereas the amount of intracel-

lular EGF is high in large, sparsely growing cells. These findings

were confirmed in independent experiments in which LDL and

EGF uptake were simultaneously monitored in the same cells

(Figures S1F and S1G). Correcting the readouts for indirect pop-

ulation context-determined perturbation effects predicted by the

models improved the statistical significance of positive controls,

which had on average 3-fold higher Z scores (Figure 1D), and

increased the statistical separation of hits from nonhits (an

average increase in kurtosis of distributions of RNAi effects

with 10%) (Figure S1I). Most importantly, the identity of the

genes in the top 100 ranking hits across all screens changed

considerably (between 27% and 67%, with an average of

40%) (Figure S1H). This led to an increased enrichment of func-

tional annotations of genes with well-known roles in endocytic

membrane trafficking, such as the cytoskeleton, secretion,

endocytosis, the Ubl (ubiquitin) pathway, vesicle coat formation,

organelle localization, and vesicle-mediated transport (Fig-

ure 1E), whereas it reduced the enrichment of annotations with

expected pleiotropic roles in cellular physiology, such as ribo-

somal protein and protein import in the nucleus (Figure 1E).

Thus, indirect population context-determined effects are

strong confounding factors in RNAi screens of endocytosis

and organelle abundance. This must be accounted for in order

to better enrich for genes that are directly involved in endocy-

tosis and to allow a meaningful comparison between pertur-

bation effects of endocytic activities that display different

population context-determined cell-to-cell variability patterns,

such as LDL and EGF uptake.

Systems-Level Insights into the Regulation of the
Endocytic Membrane System
To analyze the amount of information that the screens collec-

tively contain, we measured the pairwise correlations between

each of the 13 readouts across all direct perturbation effects

(Figure S2A). The correlation coefficients ranged from �0.1 to

a maximum of 0.44. This shows that each screen provides

orthogonal information on the endocytic membrane system. In

addition, the pairwise correlation matrix of all screens demon-

strated the presence of structure in the data (Figure S2A).

We further studied this emergent property using unsupervised

hierarchical clustering of the 13 screens based on the direct

perturbation effects of all 1,132 genes, which generated a tree

of endocytic activities and organelles (Figure 2A). Reassuringly,

Tfn uptake in HeLa and A431 cells cluster together, as does

EGF uptake in both cell lines. Thus, although there are cell line-

specific effects, these are not dominant in systems-level ana-

lyses. From the resulting tree, a subcluster emerges of EEA1

(early endosomes) and LAMP1 (late endosomes/lysosomes)

abundance, a subcluster of LDL uptake, macropinocytosis and

fluid phase uptake, and a sub-cluster of GM1 abundance on
Cell 157, 1473–1487, June 5, 2014 ª2014 Elsevier Inc. 1475
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Figure 2. Emergent Properties of the Endocytic Membrane System
(A) Bootstrapped hierarchical clustering of the 13 RNAi screens based on all 1,132 direct RNAi effects. Effects of eight individual well-characterized genes (single

gene examples), and enrichment in four manual annotation categories (Table S4) is depicted as circles.

(B) Comparison of three bootstrapped hierarchical clustering results based on direct RNAi effects of different sets of selected genes. Top panel: full data set.

Middle panel: selectedmanual annotations of core endocyticmachinery components (Table S4). Bottompanel: all protein and lipid kinases in the human genome.

(C) Annotation enrichments were calculated for each branchpoint of the tree and plotted as a function of the number of underlying screens of individual

branchpoints (ranging from one for individual screens to 13 for the root).

(D) Genes were assigned to three evolutionary conservedness classes (conserved, Caenorhabditis elegans – S. cerevisiae, intermediate conserved, Danio rerio –

Drosophila melanogaster, and recently acquired, H. sapiens – Gallus gallus), and the number of genes in each class in the top 50 hit list of each screen and each

branchpoint of the tree were calculated. Node size indicates the percent increase in genes in a class over the full data set (see legend). Only the classes strongly

conserved and recently acquired showed significant increases.

See also Figure S2.
the cell surface, ChTxB uptake, and GM130 (Golgi complex)

abundance. Furthermore, GPI-GFP uptake clusters with EGF

uptake, and the sub-clusters of Tfn uptake and EEA1-LAMP1

abundance are connected. Numerous single-gene examples

with previously characterized roles in endocytosis display the

expected profiles of direct RNAi effects across the tree. This,
1476 Cell 157, 1473–1487, June 5, 2014 ª2014 Elsevier Inc.
for instance, illustrates that RNAi of EEA1, LAMP1, and EGFR

have their strongest direct effect in the respective readouts

that stain for them, which is not the case when population-

context effects are not accounted for (data not shown). It also

shows that clathrin-mediated endocytosis in these cell lines

engages differently and sometimes multiple adaptor proteins,



depending on the cargo. Because these profiles of direct pertur-

bation effects are a unique resource, we facilitate their browsing

and comparison on an interactive Web site (http://www.

endocytome.org).

The main purpose of generating this data set is to reveal sys-

tems-level properties of the endocytic membrane system that go

beyond the identification of particular genes but that arise from

their multiple and complex interactions. Here, we report three

emerging properties. First, the subclustering in the tree (Fig-

ure 2A) did not clearly separate all clathrin-mediated endocytic

activities from clathrin-independent activities. For instance,

EGF uptake in both cell lines clustered together, even though it

is clathrin-independent in A431 cells. In addition, EGF uptake

clustered, somewhat distantly, with GPI-GFP uptake, which is

clearly clathrin-independent in our assays. Also, macropinocyto-

sis, another clathrin-independent uptake pathway, clusters with

LDL uptake and, more distantly, with fluid phase uptake, which

are both, to some extent, clathrin dependent. To understand if

different subsets of genes can drive the emergence of a different

tree structure, we performed unsupervised clustering with

various subsets of genes. Strikingly, a different tree structure

emerged when only genes that encode for well-known core

machinery components of endocytosis are used (Figure 2B). In

this tree, EEA1 abundance clustered with macropinocytosis

and GPI-GFP uptake, LDL uptake with LAMP1 abundance,

and Tfn uptake in both cell lines with fluid phase uptake. The

cluster consisting of GM1 abundance on the cell surface, ChTxB

uptake, and GM130 (Golgi complex) abundance did not change.

When we generated a tree using only genes encoding for ki-

nases, a structure similar to the one based on all genes emerged,

with the exception of fluid phase uptake, which clustered poorly

(Figure 2B). This shows that although the endocytic uptake of

two ligands may rely on similar core machinery, the regulation

of their uptake can be different. Vice versa, the uptake of two

ligands may be regulated by similar kinases, but they depend

on different core machinery. Although a tree based on genes

with well-characterized roles in endocytosis is useful to compare

functional patterns of core machinery components, we focus on

the tree that emerged from clustering all perturbation effects,

which reflects functional patterns of coregulation in the endo-

cytic membrane system.

Second, by calculating enrichments of functional gene anno-

tations among genes whose direct RNAi effects determine the

different branchpoints in the tree, we tested whether certain

gene functions are more or less common among global regula-

tors of the endocytic membrane system compared to specific

regulators of only few endocytic activities or organelle abun-

dances. This revealed that gene functions involved in, for

instance, regulating the microtubule cytoskeleton and the action

of GTPases are more enriched at the root of the tree, whereas

gene functions involved in posttranslational regulation, namely

protein kinases and acetylation, are depleted at the root (Fig-

ure 2C). Thus, the former are involved in a general regulation of

the endocytic membrane system, whereas the latter add speci-

ficity to the various endocytic activities and organelles.

Third, by using an evolutionary conservedness score for indi-

vidual human genes (Ciccarelli et al., 2006) (Figure S2B), we

asked how the complexity of the endocytic membrane system
in human cells could have evolved. A significant enrichment in

evolutionarily conserved genes was found in genes that define

the root of the tree and the first branchpoint above the root,

comprising core processes of membrane trafficking, as well as

in LAMP1 abundance, LDL uptake, EGF uptake, and the sub-

cluster of GM130 abundance, GM1 abundance on the cell sur-

face, and ChTxB uptake, which in addition comprise processes

that control the physiological state of cells (Figure 2D). An anal-

ysis of recently acquired genes in evolution revealed a highly

specific pattern. Particularly, genes controlling both EEA1 and

LAMP1 abundance involved in I-kB kinase, NF-kB cascade,

and cell death and genes controlling GPI-GFP uptake and EGF

uptake involved in cell-cell signaling and transmission of nerve

impulse are recently acquired in evolution. This shows that a

recent evolutionarily acquired mechanism for stress signaling

during infection, namely NF-kB signaling, has been specifically

linked to regulating the organelles involved in the uptake of

infectious agents. Furthermore, it suggests that cell-cell commu-

nication and nerve transmission may have acquired specific

properties in higher organisms by involving the endocytic pro-

cesses that internalize GPI-GFP and EGF.

These analyses show that a broad set of quantitative direct

perturbation measurements from a large number of orthogonal

readouts of a complex interconnected system, such as endocy-

tosis in human cells, enables the unbiased identification of sys-

tems-level insights that conventional approaches cannot reveal.

They indicate the existence of specific programs of regulatory

control that coordinate subsets of endocytic activities and

organelle abundances regardless of the core membrane-traf-

ficking machinery on which these activities rely. These programs

are enriched in gene functions, such as kinases and acetylation,

and are a mix of evolutionarily conserved processes that control

the physiological state of cells, as well as regulatory processes

recently acquired in evolution. The latter include genes involved

in stress signaling during infection and cell-cell communication.

Distinct Programs of Regulatory Control in the
Endocytic Membrane System
To further characterize these regulatory programs, we identified

functional annotations that enrich in genes coregulating the

activities in the subclusters of the tree (Table S4). For easy com-

parison, we visualized particularly enriched functional annotation

categories as a network in which the size and the color represent

enrichment and average RNAi effect, respectively (Figures 3A–

3E). Comparing the resulting patterns shows that EEA1 and

LAMP1 abundance are specifically cosuppressed by genes

involved in cell size growth and differentiation. This may suggest

that these regulatory programs suppress the endolyosomal

system to reduce the extent of plasma membrane remodeling

and membrane degradation in order to maintain a more stabi-

lized cell-surface composition, which is essential for cell differ-

entiation, to sustain cell-surface signaling, and to allow cells to

grow in size.

Another important set of interconnected annotation categories

comprises stress signaling, c-Jun terminal kinases (JNK), and

different levels of mitogen signaling. Tfn uptake is promoted by

all of these signaling activities, whereas EGF and GPI-GFP

uptake are copromoted in particular by kinases that are more
Cell 157, 1473–1487, June 5, 2014 ª2014 Elsevier Inc. 1477
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Figure 3. Distinct Programs of Regulatory

Control in the Endocytic Membrane System

(A–E) Network visualization of DAVID functional

annotation enrichments calculated for the five

branchpoints in the tree that define five different

subgroups, using a rank-based Kolmogorov-

Smirnov method. Functional annotations (nodes in

the network) are connected (gray line) when at

least 20% of the genes overlap. Dashed-lined

circles indicate groups of similar annotation. (B)

Enrichment network for the EEA1 and LAMP1

abundance subgroups. (C) Enrichment network of

the Tfn uptake subgroup. (D) Enrichment network

of the LDL uptake and macropinocytosis sub-

group. (E) Enrichment network of the EGF andGPI-

GFP uptake subgroup. (F) Enrichment network of

the GM1 abundance on the cell surface, ChTxB

uptake, and GM130 abundance subgroup.

1478 Cell 157, 1473–1487, June 5, 2014 ª2014 Elsevier Inc.



downstream in the MAPK signaling pathway. GM1 cell-surface

abundance, ChTxB uptake, and GM130 abundance in contrast

are copromoted by upstream signaling, such as the regulation

of stress and MAPKKK signaling. A strikingly opposite pattern

is found for the subcluster of LDL uptake and macropinocytosis,

which is cosuppressed by these signaling activities. The purpose

of this anticorrelated coregulation of endocytic activities by this

major signaling axis in proliferating cells is yet unknown. One

possibility is that it promotes endocytic activities that contribute

to mitogenic and stress signaling, whereas it suppresses endo-

cytic activities that would attenuate such signaling.

Genes involved in cell adhesion differentially control subsets

of endocytic activities and organelle abundances. Cell adhesion

promotes EEA1 and LAMP1 abundance, as well as LDL uptake

and macropinocytosis, whereas it suppresses EGF and GPI-

GFP uptake. The latter is consistent with the existence of exten-

sive crosstalk between cell adhesion and growth factor signaling

in anchorage-dependent growth. Finally, genes inducing lipid

biosynthesis promote Tfn uptake as well as LDL uptake and

macropinocytosis, which are connected to genes involved in in-

sulin signaling that promote LDL uptake and macropinocytosis.

STAT3 signaling specifically promotes Tfn uptake.

This shows that regulatory programs linked to multiple

aspects of the physiological state of cells (such as cell size,

proliferation, differentiation, and adhesion) and triggered by

extracellular growth factors and cytokines (and thus active

in tissue culture cells grown in serum) separate the endo-

cytic membrane system into different groups of coregulated

endocytic activities and organelle abundances. This grouping

emerged from an unbiased approach based on the direct

RNAi effects of 1,132 genes involved in signaling, membrane

trafficking, and the cytoskeleton and is different from one that

is based solely on genes that encode for well-characterized

endocytic machinery components. This indicates that even

when the endocytic uptake of different ligands is dependent

on similar core machinery, the regulation of this machinery ac-

cording to the physiological state of cells can be substantially

different.

Properties of Hierarchical Functional Interactions
between Genes in Yeast and Human Cells
To explore the above findings in greater depth requires the infer-

ence of functional interactions between individual genes at a

large scale. This would allow us to map how signaling genes

that define these regulatory programs functionally interact with

genes encoding for the molecular machinery of endocytosis

and to analyze higher-level properties of these genetic interac-

tions, including network motifs. The current gold standard in

inferring functional interactions between individual genes at a

large scale relies on double-gene perturbation screens in yeast

and bacteria (Costanzo et al., 2010; Nichols et al., 2011;

Schuldiner et al., 2005). These approaches have been highly

successful in mapping the genetic interaction landscape in these

organisms and identifying numerous functional protein com-

plexes by calculating the pairwise correlation between genes

across a large set of epistatic effects with other genes (Costanzo

et al., 2010; Nichols et al., 2011; Schuldiner et al., 2005). How-

ever, correlations are less suitable to infer regulatory interactions
between genes, such as kinases and their substrates, because

they often do not show consistent effects over large numbers

of readouts or synthetic interactions (Fiedler et al., 2009). Thus,

a statistical method that identifies subset effects, in which one

gene shows perturbation effects that are a subset of those of

another gene, might be better suited. In addition, such a method

may be useful for identifying functional interactions between en-

docytic machinery components that only cofunction in a subset

of activities, such as between clathrin and specific adaptor

proteins.

To address this, we developed a statistical approach that in-

fers interactions when overall good correlations are found and

perturbation effects are strong, but, importantly, also when sim-

ilarities in subset effects are observed, from which it in addition

infers a statistical hierarchy (Figure 4A) (Snijder et al., 2013).

This method, termed the hierarchical interaction score (HIS),

greatly outperforms correlation-based methods in inferring func-

tional interactions from parallel single-gene perturbation screens

in both Drosophila and human cells and performs equally well in

inferring functional interactions from synthetic double-gene

knockout screens in yeast (Snijder et al., 2013).

To systematically evaluate the power of the HIS, we first calcu-

lated HIS interaction scores from a large set of synthetic interac-

tions in yeast (Costanzo et al., 2010). HIS interaction scores

higher than zero were obtained for 257,807 combinations

(1.72%) between 3,876 S. cerevisiae genes (Figure S3). Because

correlation-based methods work well on the yeast data set, we

could compare enrichments in functional annotations of genes

connected by theHIS and by correlation. Strikingly, the two infer-

ence methods are to a large extent complementary and connect

genes that enrich in different cellular processes. For instance,

ATP-binding (mainly kinases), endoplasmic reticulum and Golgi,

and vesicle transport contain significantly more hierarchical than

correlation-based interactions (Figure 4B). In addition, the HIS

infers more regulatory interactions between cellular processes,

in particular between kinases, membrane trafficking, and the

cytoskeleton, whereas overall correlation identifiesmore interac-

tions within functional annotations of multisubunit complexes,

such as the ribosome (Figure 4C) or the proteasome (data not

shown). Thus, the HIS reveals the type of functional interactions

that we are concerned with in this study.

Next, we calculated HIS interaction scores from our data set

(see Figure 4A) for each of the 1.28 million possible pairwise

combinations between the 1,132 genes. For 55,070 combina-

tions (4%) between 969 genes, a score higher than zero was

found (Figure S3; Table S5; Data S1), indicating a functional

interaction. When we compared HIS interactions from the yeast

and our data set, we could identify numerous interactions that

were present in both (Data S1), some of which were confirmed

in an independent database on functional gene and protein inter-

actions (STRING v. 9.0). In one example, functional interactions

were found between membrane-trafficking machinery (RAB7A,

ALIX, and VPS39), actin-binding proteins (CAPZA1, CAPZB),

and mitogen-activated protein kinases (MAPK1 and MAPK7)

(Figure 4D). Interestingly, the conserved example revealed an

interaction motif, known as Fan-In, in which two genes (or sets

of genes) converge on a downstream gene (or set of genes). In

fact, we found that this motif is the most abundant among all
Cell 157, 1473–1487, June 5, 2014 ª2014 Elsevier Inc. 1479
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possible hierarchical interaction motifs between three genes in

our data set (Figure 4E). A subsequent analysis of functional

annotation enrichments among genes connected in the Fan-In

hierarchical interaction motif revealed that integration of actin

and membrane-trafficking machinery to downstream kinases,

like the conserved example mentioned above (Figure 4F), as

well as the integration of two upstream kinases to downstream

membrane trafficking machinery (Figure 4G), is commonly

used. Performing this enrichment analysis on the other hierar-

chical interaction motifs identified in our data set revealed

numerous additional types of commonly used regulation: tyro-

sine kinases upstream of both endomembrane and plasma

membrane (Fan-Out motif), plasma membrane proteins inter-

acting via protein kinases with the Golgi complex, which in turn

interact with the plasma membrane (Feedback motif), and

tyrosine kinases that are both directly upstream of actin cyto-

skeleton components and indirectly upstream via endosome

components, integrating these two annotation groups (Feedfor-

ward motif).

Taken together, comparing HIS with correlation-based inter-

actions from a yeast synthetic interaction data set revealed

that both methods are largely complementary, but HIS-based

functional networks are superior in providing insights into the

systems-level organization of regulatory interactions in cells.

Many cellular processes contain numerous hierarchical interac-

tions that have thus far not been uncovered, such as regulatory

interactions between membrane trafficking, the cytoskeleton,

and signaling. In addition, hierarchical interaction motifs inferred

from our data set suggest the existence of generic regulatory

principles in the endocytic membrane system.

A Map of Hierarchical Functional Interactions between
Signaling and Membrane Trafficking Genes in Human
Cells
We next selected HIS interactions from our data set with a score

of 0.3 or higher (between 132 genes; 13.6% of all genes pre-

dicted to interact) (Figure 5A). At this threshold, only strong out-

liers in the full distribution of interaction scores are considered

(0.5% of all predicted interactions; p value: 6.2 3 10�154) (Fig-

ure 5A), collectively showing the highest enrichment in data-

bases of known functional associations between genes and
Figure 4. Systems Properties of Hierarchical Interactions in Yeast and

(A) Schematic of the principle underlying the calculation of the hierarchical interac

effects to the gene with the narrower set of effects. The strength of the interaction

are similar.

(B) Systematic comparison of functional annotation enrichments in genes connect

screen inS. cerevisiae (Costanzo et al., 2010). Functional annotations (nodes in the

size of each node indicates the number of genes in an annotation category and

interactions.

(C) Comparison of inferred interactions in the yeast data set between genes with

connections between functional annotations inferred by the HIS (blue) and by co

(D) Example of functional interactions only inferred by the HIS in both data sets

coded depending on the subset of screens in this study that contributed most in

(E) Number of three-gene HIS interaction motifs and number of unique genes in

(F) Enriched Fan-In motif between genes with depicted functional annotations to

(G and H) Enrichments and examples of selected interaction motifs betwee

cytoskeleton.

See also Figure S3.
thus displaying the most significant predictive power (Fig-

ure S4A). We then created a pairwise HIS map of these 132

genes using all inferred HIS interaction values and clustered

the genes based on their profile of HIS interactions. This revealed

a set of distinct clusters with a strong modular structure (Figures

5B and S4B for a high-resolution map with gene labels), which

we color-coded according to the subset of screens that

contribute in determining the interaction. Like correlation-based

genetic interaction maps (Schuldiner et al., 2005), this map iden-

tifies clusters of genes with similar HIS interaction profiles across

a large number of genes and with HIS interactions among each

other (blocks along the diagonal) and reveals genes that act as

connectors of distinct modules (horizontal or vertical stripes of

HIS interactions away from the diagonal). An important differ-

ence between the twomethods is that a HISmap is not fully sym-

metric, reflecting the directionality in the inferred interactions.

To study some of the properties of the HIS map in more detail,

we created a functional interaction network between the 132

genes using 247 functional interactions (HIS value R 0.3,

p value: 6.2 3 10�154) (Figure 5C). The connections in this

network are similarly color-coded as in the HIS map (see color

legend of the endocytic tree), and the thickness of the interaction

reflects the interaction score. Many connections are directional,

reflecting the statistical hierarchy of a broader set of effects

being upstream of a subset of effects. Some connections are

bidirectional, which indicates the absence of a statistical hierar-

chy and are seen in tight clusters (Data S1). The HIS network

reflects the strong modular structure visible in the HIS map,

with clusters of genes functionally interconnected based on

subsets of endocytic activities and organelles, and a number

of genes, which link these subclusters. Below, we mention four

examples of interconnected genes, which control different sub-

sets of activities in the tree.

The first example (Figure 6A), which promotes EGF and GPI-

GFP uptake, consists of EGFR, PIP5K3, SNX6, and MAP3K11.

EGFR lies upstream of PIP5K3 (PIKFYVE), consistent with EGF

signaling stimulating the production of PI(3,5)P2 (Tsujita et al.,

2004), which lies upstream of SNX6, as this component of the

retromer requires PI(3,5)P2 for membrane recruitment (Ruther-

ford et al., 2006). The second example promotes GM1 abun-

dance at the cell surface and ChTxB uptake, consisting of
Human Cells

tion score (HIS). Directionality is inferred from the gene with the broader set of

s (HIS value; thickness of the arrows) reflects the extent to which subset effects

ed by the HIS and by correlation inferred from a large double-gene perturbation

network) are connected (gray line) when at least 20%of the genes overlap. The

the color a relative enrichment in HIS- (blue) versus correlation-based (yellow)

different functional annotations. Bar graphs show the enrichments for specific

rrelation (yellow).

and confirmed in an independent database. Edges between nodes are color-

determining the interaction.

each motif inferred from the data set collected in this study.

which the conserved example in (D) belongs.

n functional gene annotations of signaling, membrane trafficking, and the
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Figure 5. A Map of Regulatory Functional

Interactions in the Endocytic Membrane

System

(A) Distribution of HIS interactions between 969

genes calculated from the 13 RNAi screens. The

number of HIS interactions with the valueR0.3 are

247 (red dashed line in distribution) (p value: 6.2 3

10�154), connecting 132 genes that have at least

one HIS interaction above this threshold.

(B) A full HIS map of all HIS values between these

132 genes is depicted, color-coded according to

the subset of screens that determined the inter-

action.

(C) Network visualization of the 247 HIS in-

teractions with values R0.3 between 132 genes.

Edges between nodes are color-coded depending

on the subset of screens that contributed most in

determining the interaction (see legend).

See also Figure S4.
GSK3A, GSK3B, SAR1B, RAB37, and TJP3 (Figure 6B). Here,

the two isoforms of GSK3 and TJP3 are upstream of RAB37,

and GSK3B is upstream of SAR1B. GSK3, a serine/threonine

kinase, is critically important in the beta-catenin/Wnt signaling

pathway (Clevers, 2006), whereas RAB37mediates the secretion

of post-Golgi secretory granules (Brunner et al., 2007), and

SAR1B has a central role in vesicle transport from the endo-

plasmic reticulum to the Golgi complex. In a third example, we

find TGFBR2, ARPC2, ARPC3, ACTB, MYO6, and RAB5C

promoting macropinocytosis (Figure 6C). TGFBR2 functions

upstream of ARPC2 and ACTB (Moustakas and Stournaras,

1999), which connect to ARPC3 and MYO6. ARPC2 and MYO6

also connect toRAB5C. This places TGF-beta receptor signaling

in control of macropinocytosis by functionally interactingwith the

Arp2/3 complex, whichmediates actin polymerization, and beta-
1482 Cell 157, 1473–1487, June 5, 2014 ª2014 Elsevier Inc.
actin, which interacts with the minus-end-

directed actin motor Myosin-6. Interest-

ingly, the HIS predicts that the Arp2/3

complex and Myosin-6 functionally in-

teract with RAB5C, which acts as a mac-

ropinocytosis-specific isoform of Rab5.

The fourth example contains functional

interactions between VPS18, AP2M1,

AKT2, JAK3, and CLTC, which regulate

the uptake of Tfn (Figure 6D) and is further

discussed below.

Although it is difficult to estimate the

true-positive rate of the 247 functional in-

teractions in this map, �30% of them link

genes that are functionally coannotated;

�8% of them match known functional

interactions; and �4% represent known

direct physical interactions between pro-

teins (Figure S4). This is 3- to 4-fold higher

than what correlation-basedmethods can

predict from parallel RNAi screens in

human or Drosophila cells and reach

about half the estimated true-positive
rate of both correlation-based and HIS interactions inferred

from synthetic interaction screens in yeast and bacteria (Cos-

tanzo et al., 2010; Nichols et al., 2011; Snijder et al., 2013). The

inferred interactions reveal known regulatory mechanisms, and

the hierarchy holds functional information. When we tested a

number of specific kinase inhibitors in Tfn uptake, we found

that specifically the inhibitors of AKT2 and JAK3 strongly reduce

Tfn uptake in HeLa and A431 cells (Figure 6E), whereas the other

tested kinase inhibitors had no or milder effects. This is consis-

tent with the fact that the strongest predicted functional interac-

tions from our data set for kinases controlling Tfn uptake were

downstream of AKT2 and JAK3 (see Figure 5, blue connections).

Because many connections in the network are uncharacterized,

they provide a resource for studying mechanisms of the regula-

tory molecular interplay between signaling and endocytosis.
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Figure 6. Examples of Predicted Regulatory

Functional Interactions and Validation

(A–D) Selected examples of predicted HIS in-

teractions. Shown are HIS subnetworks inferred

from the direct RNAi effects across the endocytic

tree (color-coded bar graphs), based on all pair-

wise HIS values between the genes (see heat-

maps; rows are forward interactions, and columns

are reverse interactions), resulting in either fully

directional interactions, asymmetric bidirectional

interactions, and fully bidirectional interactions,

and color-coded depending on the subset of

screens that contributed most in determining the

interaction (see legend).

(E) Z score mean intensity per cell (normalized with

themean and SDof DMSO controls) of intracellular

Tfn after 15 min uptake in HeLa and A431 cells

pretreated for 3 hr with different inhibitors (see

legend).
Characterizing a Subnetwork of Functional Interactions
We characterized in more detail the functional interactions be-

tween VPS18, AKT2, and CLTC and between JAK3 and CLTC.

RNAi of VPS18 reduces the level of total AKT and strongly in-

creases the amount of phosphorylated AKT at both Thr308

(Figure 7A) and Ser423 (data not shown). Quantitative TIRF

microscopy revealed that under these conditions total AKT (Fig-

ure 7B) and phosphorylated AKT at Thr308 (Figure S5A) are

strongly depleted from the plasma membrane. VPS18 might

control levels and localization of AKT by recruiting AKTIP on

endosomes (Richardson et al., 2004), consistent with a role for

local entrapment of activated AKT2 on endosomes to protect it

from degradation (Walz et al., 2010).

We next applied automated large-scale three-color TIRF

imaging of >430 genome-edited cells with endogenously tagged

CLTA-RFP and DNM2-GFP (Doyon et al., 2011), combined with

cell segmentation and automated detection of >55,000 clathrin-

coated pits (CCPs), to determine the number of CCPs per cell

and measure distributions of CCP content. Both inhibitors cause

a strong increase in the number of CCPs per cell (Figure S5C).
Cell 157, 1473–14
Compared to the control, the CCPs

in AKT2-inhibited cells contain similar

amounts of CLTA but much less DNM2

(Figures 7C, 7D, and S5D) and more Tfn

(Figure S5E). The CCPs in JAK3-inhibited

cells contain more CLTA and DNM2 (see

Figures 7C, 7D, and S5D for full distribu-

tions) and strongly accumulate Tfn (Fig-

ure S5E). This suggests that AKT2 activity

promotes the recruitment of DNM2during

maturation of CCPs, whereas JAK3 activ-

ity promotes the internalization of DNM2-

positive CCPs.

We then studied the dynamics of CCPs

and focused on two types of events (Fig-

ure 7E): unproductive formation of a CCP,

where CLTA appears and disappears

without transient recruitment of DNM2,
and productive formation and internalization of a CCP, where

CLTA appears and only disappears simultaneously with DNM2

upon its latter recruitment. We developed a computational

method to obtain time traces of 50,000 productive events. This

shows an average lifetime of CCPs of 120 s from initial recruit-

ment of CLTA to productive internalization by DNM2, as previ-

ously reported (Loerke et al., 2009) (Figure 7F). Both inhibitors

decrease the rate of productive internalization events (Figure 7G)

and increase the lifetime of clathrin-coated pits on the cell sur-

face (Figure 7H), but the effect of the JAK3 inhibitor is stronger.

Furthermore, in those internalization events that were still pro-

ductive, more DNM2 was recruited to the CCP in JAK3-inhibited

cells compared to untreated cells, whereas this was not the case

in AKT2-inhibited cells (Figure 7I).

DISCUSSION

In this study, we perturb, by means of RNAi, a selected set of

human genes involved in signal transduction, membrane traf-

ficking, and the cytoskeleton and quantify the effects on the
87, June 5, 2014 ª2014 Elsevier Inc. 1483
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endocytic membrane system with orthogonal readouts from

13 high-throughput image-based screens. Quantifying a large

number of single cells per perturbation and population context

modeling allowed a quantitative and meaningful comparison

of direct perturbation effects. This enabled the discovery of un-

known systems properties of the endocytic membrane system

in human cells. We demonstrate the existence of specific pro-

grams of regulatory control that coordinate subsets of endocytic

activities and organelle abundances regardless of the core

membrane-trafficking machinery on which these activities rely.

The programs are a mix of evolutionary conserved processes

that control the physiological state of cells, as well as processes

recently acquired in evolution, such as stress signaling during

infection and cell-cell communication. They consist of specific

combinations of signaling pathways and subdivide the endocytic

membrane system into five groups of coregulated endocytic

activities and organelle abundances.

To explore these regulatory programs in greater depth, we

applied a statistical method, termed the hierarchical interaction

score (HIS) (Snijder et al., 2013), that uses subset effects in the

data to infer, at a large scale, a type of functional interaction be-

tween genes, which are hierarchical and contain directionality.

These interactions allowed the large-scale identification of

regulatory motifs between signaling, membrane trafficking, and

cytoskeletal genes and suggest a widespread use of signal inte-

gration, as well as feedback and feedforward mechanisms.

Importantly, the inferred directionality in the interaction or inter-

action motif represents a statistical hierarchy between two or

multiple perturbation effects present in the data. More work

will be necessary to understand how this statistical hierarchy

relates to biochemical directionality and what the roles of hierar-

chical interaction motifs are in molecular terms. Nevertheless, it

represents a resource for systems biology research in mem-

brane trafficking, analogous to how gene regulatory network

motifs have been important for understanding systems proper-

ties of transcription (Alon, 2007). Examples show that this

sheds light onto the interactions between growth factor

signaling, membrane recycling machinery, the actin cytoskel-

eton and early endosome trafficking, and between beta-catenin/

Wnt signaling and the secretory pathway. In addition, a more
Figure 7. Characterization of Predicted Regulatory Functional Interact

(A) Western blot of total AKT and Thr308-phosphorylated AKT after RNAi of VPS

(B) TIRF microscopy analysis of AKT localization at the plasma membrane after R

channel, quantified in 1,131 cells from three independent experiments. ***p value

(C) Selected TIRF microscopy images of CLTA-RFP and DNM2-GFP genome-e

specific inhibitor. Scale bars, 20 mm; enlargement, 7 mm.

(D) Quantification of the amount of CLTA and DNM2 in CCPs in cells treated with th

CCPs compared to their intensity distributions in control cells are shown.

(E) Kymograph of CCP dynamics in CLTA-RFP and DNM2-GFP genome-edite

hexagon) events.

(F) Large-scale automated analysis of 50,000 productive internalization events in

DNM2. Blue dashed line: significant accumulation of CLTA in CCPs. Orange das

(G) Quantification of productive internalization events (sec/mm2) in control (54,90

inhibitor-treated cells (12,356 events, 17 cells). Depicted are cell-averaged value

(H) Bar graph showing CCP lifetimes, measured as the time before the internalizati

averaged values ± SD. **p value < 0.02.

(I) Bar graph quantifying the amount of DNM2 accumulated in CCPs before the inte

internalization. Depicted are cell-averaged values ± SD. **p value < 0.006 (all p v

See also Figure S5.
detailed experimental characterization of a subset of predicted

hierarchical interactions reveals that intracellular endosome

machinery controls clathrin-mediated endocytosis at the cell

surface via the serine/threonine kinase AKT2, which promotes

maturation and dynamin recruitment to clathrin-coated pits,

whereas the serine/threonine kinase JAK3, involved in cytokine

signaling, promotes productive internalization of mature cla-

thrin-coated pits.

Hierarchical functional genetic interactions are also ubiqui-

tous in S. cerevisiae. They can be inferred from double-gene

perturbation screens, representing a class of functional regula-

tory interactions that have been largely unknown. Many cellular

processes contain more hierarchical than correlation-based

interactions, indicating a general property of the functional

genetic organization of cells. This property goes beyond the

interactions between membrane trafficking, signaling, and the

cytoskeleton and applies to processes such as DNA repair,

RNA splicing, cell-cycle control, and metabolism. We expect

that the types of information that can be retrieved with maps

of hierarchical interactions are manifold, of which only a frac-

tion has been explored here. Our approach will be generally

applicable, including to large-scale gene knockout screens

in human cells (Mali et al., 2013; Shalem et al., 2014), and

complementary to conventional genetic interaction screening

to decipher complex and heavily regulated cellular processes

across organisms.

EXPERIMENTAL PROCEDURES

Details of all experimental and computational procedures are described in the

Extended Experimental Procedures. All previously published MatLab code

and CellProfiler modules are available on http://www.infectome.org. The

data set can be browsed online at http://www.endocytome.org.

Development of Image-Based Screens

Cells were plated in 384-well plates for reverse transfection with siRNA pools

and subsequently grown for 3 days in complete medium to establish efficient

knockdown of the targeted genes. At the end of each assay, cells were per-

meabilized for 5 min with 0.1% Triton X-100 at room temperature (RT) and

stained for 5 min at RT with DAPI and Cell Trace. After final washing, cells

were kept in PBS for imaging. Formore details, see the Extended Experimental

Procedures.
ions

18 with three independent siRNAs.

NAi of VPS18 or AKT2. Box plots indicate the AKT staining intensity in the TIRF

< 10�10.

dited SK-MEL-2 cells treated with DMSO, ATK2-specific inhibitor, or JAK3-

e AKT2 or JAK3 inhibitor. Log2-fold differences in their intensity distributions in

d SK-MEL-2 cells shows productive (white triangle) and unproductive (white

29 cells. Depicted is the average time trace of the Z score signal of CLTA and

hed line: background intensity in the CLTA channel.

6 events, 29 cells), AKT2 inhibitor-treated (30,093 events, 25 cells), and JAK3

s ± SD. **p value < 0.02, ***p value < 0.001.

on event at which CLTA is significantly accumulated in CCPs. Depicted are cell-

rnalization event, measured as the sum of DNM2 intensity in the last 50 s before

alues are two-tailed t tests).
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High-Content Single-Cell Imaging of Populations of Cells

We imaged 384-well plates with a wide-field 203 objective microscope

(ImageExpress Micro, Molecular Devices). We acquired five focal planes per

image and 30 sites per well. The maximum intensity projection of the five focal

planes was saved for each site and used for further analysis. The 2.1 3 106

images (6TB) collected in the primary and secondary screens were stored as

16-bit uncompressed TIFFs.

Image Analysis Pipeline, Single-Cell Feature Extraction, and

Supervised Machine Learning for Data Quality Control

For image analysis and single-cell feature extraction, we used the open-

source software package Cell Profiler (Carpenter et al., 2006), extended with

custom-made image analysis modules for the measurement of cell popula-

tion-context features (Snijder et al., 2009, 2012). For supervised classification

of cellular phenotypes based on support vector machines, we used custom

software (Rämö et al., 2009). In total we extracted �200 features per single

cell, resulting in 5TB of single-cell measurements. For detailed information

about features extracted from single cells, see the Extended Experimental

Procedures.

Clustering, Functional Annotation Enrichments, Inference of

Functional Interactions, and Identifying Network Motifs

Detailed descriptions of these computational approaches can be found in the

Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, one data file, and five tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cell.2014.04.029.
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