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SUMMARY

Lipid composition affects the biophysical properties
of membranes that provide a platform for receptor-
mediated cellular signaling. To study the regulatory
role of membrane lipid composition, we combined
genetic perturbations of sphingolipid metabolism
with the quantification of diverse steps in Toll-like
receptor (TLR) signaling and mass spectrometry-
based lipidomics. Membrane lipid composition was
broadly affected by these perturbations, revealing a
circular network of coregulated sphingolipids and
glycerophospholipids. This evolutionarily conserved
network architecture simultaneously reflected mem-
brane lipid metabolism, subcellular localization, and
adaptation mechanisms. Integration of the diverse
TLR-induced inflammatoryphenotypeswith changes
in lipid abundance assigned distinct functional roles
to individual lipid species organized across the
network. This functional annotation accurately pre-
dicted the inflammatory response of cells derived
from patients suffering from lipid storage disor-
ders, based solely on their altered membrane lipid
composition. The analytical strategy described
here empowers the understanding of higher-level
organization of membrane lipid function in diverse
biological systems.
INTRODUCTION

The cellular membrane defines the minimal unit of life and cre-

ates the compartmentalization that orchestrates the transport

of molecules, intracellular signaling, cell-cell communication,

pathogen recognition, and many other processes (van Meer

et al., 2008). Membrane function is an emergent property of

the intricate interactions of its protein and lipid constituents,

with glycerophospholipids, sphingolipids, and sterols as most

abundant membrane lipids. Glycerophospholipids and sphingo-

lipids are categorized into distinct lipid classes defined by the
170 Cell 162, 170–183, July 2, 2015 ª2015 The Authors
chemical structure of their head group. Each lipid class contains

hundreds of different lipid species, further varying in fatty acid

chain length, linkage, and saturation, among others (Coskun

and Simons, 2011), the exact measurement of which has been

empowered by the advent of lipidomics (Shevchenko and Si-

mons, 2010; Wenk, 2005). Distinct lipid species are asymmetri-

cally distributed across the plasma membrane (PM) and the

various intracellular membranes (van Meer et al., 2008), in part

due to locally confined synthesis and active transport of lipids

(Maeda et al., 2013), providing a functionally distinct spatial

organization to the lipid landscape of a cell (Holthuis andMenon,

2014).

The plasma membrane and endosomal membranes mediate

the first line of defense in cellular innate immunity by establishing

a physical barrier against microbial pathogens and constitute the

main site of pathogen recognition by accommodating special-

ized cell surface receptors such as Toll-like receptors (TLRs).

TLRs are a conserved family of transmembrane proteins that

recognize distinct pathogen-associated molecular patterns

and activate key signaling pathways in innate immunity (Kawai

and Akira, 2010). The plasma membrane and endosomal resi-

dent TLR4, for instance, mainly recognizes gram-negative bac-

terial lipopolysaccharides (LPS), while the endosomal TLR7

and TLR9 recognize nucleic acids derived from a wide range of

microbes. TLR ligand-binding leads to receptor dimerization

and the activation of subsequent signaling cascades, which,

for most TLRs, involves a partially overlapping set of accessory

molecules (Bonham et al., 2014; Lee et al., 2012). This in turn

leads to transcriptional and metabolic changes, including the

induction and secretion of cytokines (Kawai and Akira, 2010),

as well as the upregulation of sphingolipid synthesis (Memon

et al., 1998). TLR signaling eventually triggers pathogen-specific

responses by the adaptive immune system, thus linking cellular

innate immunity to the adaptive immune system of the host (Ka-

wai and Akira, 2010). In macrophages, TLR activation induces

changes in the lipid composition and properties of cellular mem-

branes (Andreyev et al., 2010; Dennis et al., 2010), adapting the

cellular morphology for polarization and pathogen phagocytosis.

TLR signaling is meticulously regulated to clear pathogens yet

avoid host damage through hyperinflammation (Serhan et al.,

2008). Mechanisms of regulation act, among others, at the level

of transmembrane domains of TLRs, mediating dimerization and
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activation (Kawai and Akira, 2010) and at the level of receptor

trafficking, altering the adaptor protein complexes and signaling

(Bonham et al., 2014; Lee et al., 2012). While selected species of

sphingolipids have been characterized in the context of inflam-

mation (Alvarez et al., 2010; Józefowski et al., 2010; Vandan-

magsar et al., 2011), the chemical complexity of biological

membranes requires more global approaches to deconvolute

the function of the lipid landscape (Atilla-Gokcumen et al.,

2014; da Silveira Dos Santos et al., 2014).

RESULTS

Sphingolipid Metabolism Is Regulated by TLR
Stimulation and Modulates TLR-Induced IL-6 Release
Previously, quantitative lipidomics and genome-wide transcrip-

tional changes upon TLR4 stimulation were measured in bone

marrow-derived macrophages (BMDMs) and in the murine

macrophage RAW264.7 (RAW) cell line (Dennis et al., 2010;

Ramsey et al., 2008) (Figures S1A–S1C), which revealed sphin-

golipid metabolism to be strongly differentially regulated upon

TLR stimulation (Figure S1B). We therefore selected 24 genes

based on the sphingolipid metabolic network (Kanehisa and

Goto, 2000) focusing on ceramide metabolism, including several

poorly studied genes, all expressed in RAW cells (Figure S1D;

Table S1) (Hannun and Obeid, 2011). Their TLR4- and TLR9-

driven transcriptional regulation was measured by stimulating

RAW macrophages with LPS and unmethylated CpG DNA

(CpG), respectively (Figures 1A, S1D, and S1E).

Mapping our expression results onto the known sphingolipid

metabolic pathway showed that 18 of the 24 geneswere similarly

regulated by both TLRs (Figures 1A and S1E), consistent with the

fact that TLR4 and TLR9 activate a partially overlapping set of

downstream transcription factors (Kawai and Akira, 2010).

Genes induced by at least one TLR ligand were associated

with the de novo synthesis of ceramides (Sptlc1 and Sptlc2,

Cers5 andCers6, andOrmdl1) and their downstream processing

into other key sphingolipids including sphingomyelins (SMs) by

Sgms2, sphingosine-1-phosphate (S1P) by Sphk1, and gluco-

sylceramides (GluCers) by Ugcg (Figure 1A). In contrast, genes

involved in the degradation of sphingomyelins (Smpd1 and

related genes) and S1P (Sgpl1) were predominantly downre-

gulated (Figure 1A). This significant and consistent transcrip-

tional pattern across the network (p < 1.7 3 10�8; Figure S1F)

suggested increased levels of ceramides, sphingomyelins,

S1P, and glucosylceramides upon TLR stimulation, as indeed

observed in the publicly available lipidomics data (Figure S1A).

To study the roles of sphingolipids in TLR biology, we geneti-

cally perturbed these 24 genes to identify reproducible and

diverse effects on TLR signaling and quantify the corresponding

changes in membrane lipid abundance, allowing an integrated

analysis of these two cellular properties. Each of the 24 genes

and three TLR controls were targeted by three to five short

hairpin RNAs (shRNAs) in RAW macrophages resulting in 129

stable shRNA cell lines (Figure 1B; Table S1). Filtering for a

knockdown efficiency of at least 58% resulted in 87 cell lines

with a median knockdown efficiency of 88% (Figure S1G). These

87 cell lines covered the 24 genes with on average three shRNA

cell lines per gene (Table S1).
In a focused screening campaign, these 87 cell lines were

monitored for differences in TLR signaling as measured by the

release of the cytokine interleukin 6 (IL-6) into the supernatant

after stimulation, a late quantitative read-out of TLR activation

(Kawai and Akira, 2010). To measure the activity of diverse

TLRs, cells were stimulated with Imiquimod (IMQ) or CpG, which

are recognized by the endosomal TLRs 7 or 9, respectively, or

with LPS, recognized by TLR4. As expected, silencing of the

TLR controls (sh:Tlr4, sh:Tlr7, sh:Tlr9) strongly attenuated their

respective ligand-induced IL-6 release compared to sh:GFP

control (Figure 1C). Silencing of genes involved in sphingolipid

metabolism led to various TLR-induced IL-6 release phenotypes

(Figure 1D). For instance, knockdown of Sphk1 or Cers2 led to

significantly reduced IL-6 release after stimulation with all three

TLR ligands, while knockdown of Ormdl1 led to enhanced IL-6

release upon endosomal TLR stimulation and decreased IL-6

release upon TLR4 stimulation (Figure 1D). Cytoplasmic recogni-

tion of pathogen-associated molecular patterns (Stetson and

Medzhitov, 2006) was not affected by silencing of Sphk1, as

stimulation with interferon stimulatory DNA or poly(dA:dT) re-

sulted in equal levels of interferon b release for sh:Sphk1 and

sh:GFP (FigureS1H). Tosummarize theTLR-induced IL-6 release

measurements over all shRNA cell lines per gene and per stim-

ulus, the log2 fold-change relative to the corresponding sh:GFP

control value was calculated and averaged over technical and

biological replicates. We next either averaged the values of

consistent and strong (absolute log2 fold-change >0.7) shRNA

phenotypes per gene (Figures 1E–1G, black dots), or, in case

these criteria were not met, the values of all shRNAs per gene

(Figures 1E–1G, gray dots). Knockdown of 18 genes affected

IL-6 release after stimulation with at least one TLR ligand consis-

tently for two or more shRNA cell lines (Figures 1E–1G), while cell

viability was unaffected in all cases. In unstimulated conditions,

the 87 shRNA cell lines showed only background IL-6 levels in

the supernatant.

In both the IMQ and CpG screens, the associated sh:Tlr7 and

sh:Tlr9 controls led to the strongest reduction in IL-6 release,

respectively (Figures 1E and 1F). In contrast, the LPS screen re-

vealed five genes whose knockdown led to an even stronger

reduction than the sh:Tlr4 control (Figure 1G). The CpG and

IMQ screens not only manifested decreased IL-6 release but

also revealed several genes which, upon knockdown, led to

increased IL-6 release after stimulation (Figures 1E and 1F).

Comparing the results of the three IL-6 release screens showed

that the CpG and IMQ screens were strongly correlated (r = 0.94)

(Figure 1H), while the LPS screen correlated considerably less

with the other two screens (mean r = 0.71). This suggested that

the sphingolipid metabolic pathway affected the endosomal

TLRs 7 and 9 to an equal extent, while TLR4 at the plasma mem-

brane was differentially affected.

Integrating the TLR-induced transcriptional regulation of

sphingolipid metabolism with the corresponding gene pertur-

bation phenotypes could reveal mechanisms by which a cell

either boosts or resolves inflammation through modulation of

its membrane lipid composition. To reveal the presence of

such mechanisms, the IL-6 screening results for all three TLR

stimuli were combined with the relative expression of target

genes in wild-type RAW cells after stimulation of TLR4 and
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TLR9 (Figure 1I). This integration revealed a group of genes

acting to enhance pan-TLR signaling. Among those were

Ugcg and Sphk1, associated with the synthesis of the cer-

amide-derived metabolites glucosylceramides and S1P,

respectively, which were required for and induced by pan-

TLR signaling. However, the majority of the genes appeared

to dampen TLR signaling. For instance, six genes were identi-

fied as negative regulators of CpG- and IMQ-driven signaling

and transcriptionally upregulated upon TLR stimulation. Four

of these six genes encoded proteins that are associated with

de novo ceramide synthesis (Ormdl1, Sptlc1, Cers6, and

Sptlc2) (Figure 1I) and could be involved in preventing hyperin-

flammation and promoting the resolution of inflammation in

response to endosomal TLR activation (Serhan et al., 2008).

Further, a different set of genes associated with ceramide syn-

thesis was specifically regulated by and functionally involved in

TLR4 signaling (Cers5, Cers2, Smpd4, and Ormdl3) (Figure 1I).

Taken together, the integration of TLR-induced transcriptional

regulation of sphingolipid metabolic genes with their corre-

sponding perturbation phenotypes revealed both positive and

negative modulators of TLR function across various branches

of sphingolipid metabolism.

To resolve these different phenotypes at the level of indi-

vidual membrane lipids, nine gene perturbations (sh:Sptlc2_1,

sh:Cers2_4, sh:Cers6_2, sh:Smpd1_4, sh:Ormdl1_3, sh:Ugcg_1,

sh:Asah1_2, sh:Lyst_1, and sh:Cln3_1) were selected for further

characterization by quantitative lipidomics (Table S1). The IL-6

releasephenotypesuponknockdownof thesegeneswereconsis-

tent across multiple independent shRNAs (Figures 1D and S1I).

To maximize the statistical power by which lipid-phenotype rela-

tionships could be inferred, this subset of genes was chosen to

represent diverse IL-6 release phenotypes across the different

regulatory mechanisms and across sphingolipid metabolic

branches (indicated in Figures 1A, 1E–1G, and 1I).

Genetic Perturbations of Sphingolipid Metabolism Lead
to Diverse Membrane Lipid States
Mass spectrometry-based lipidomics was used to measure the

abundance of 245 membrane lipids at steady state in the nine
Figure 1. TLR-Driven Transcription of the Sphingolipid Metabolic Netw
Silencing of This Network

(A) Selected sphingolipid and glycerophospholipid metabolic reactions (KEGG),

proteins (rectangles). Protein location based on KEGG where possible. Heatmap

with LPS (100 ng/ml) or CpG (5 mM) for indicated time points measured by qRT-P

are colored consistently throughout the study. Data are combined of at least tw

sphinganine; Spho, sphingosine; C1P, ceramide-1-phosphate. For other abbrev

(B) Schematic representation of the generation and characterization of stable sh

(C) IL-6 release as measured by ELISA in sh:Tlr and sh:GFP control cell lines stim

representative of at least five independent experiments and shown as mean ± S

(D) As in (C), but for sh:Sphk1, sh:Cers2, and sh:Ormdl1 cell lines. Data are repre

four technical replicates. *p < 0.005.

(E–G) Screening results of three IL-6 release screens in 87 loss-of-function cell lin

are plotted as log2 fold-change relative to the respective sh:GFP control cell line an

two or more shRNA cell lines with consistent phenotypes, while gray dots repres

lipidomics analysis. Data are combined of at least five independent experiments

(H) Scatter plot of IMQ and CpG screening results. Red line indicates linear fit. D

(I) Heatmap shows integration of target gene expression in wild-type RAW cells a

cell lines. Gray triangles indicate absence of consistent phenotypes for multiple s

See also Figure S1 and Table S1.
selected cell lines and the sh:GFP control (Figure 2A). Specif-

ically, glycerophospholipids (phosphatidylcholines [PC], phos-

phatidylethanolamines [PE], phosphatidylglycerols [PG], and

phosphatidylserines [PS]) and sphingolipids (ceramides [Cer]

and sphingomyelins [SM]) were quantified. The developing field

of lipidomics still lacks standardized methods for data normali-

zation, analysis, and visualization, as well as for lipid annotation

(Snijder et al., 2014). Here, lipid levels were normalized to total

lipid content and transformed as log2 fold-change relative to

the sh:GFP control (Figure S2A). Both raw and transformed for-

mats are available as supplementary results, annotating all lipids

with two complementary nomenclatures (Table S2). The three

biological replicates displayed high reproducibility (average r =

0.89). Throughout this data set, significant increases and de-

creases were observed for the majority of lipid classes in each

of the nine perturbations, defining the unique lipid states in which

their cellular phenotypes manifested (Figure 2B).

Analysis of the changes in lipid composition caused by the

nine perturbations revealed both expected and unexpected re-

sults. As expected, in most cases silencing of an enzyme led

to increased substrate levels and/or decreased product levels.

For instance, knockdown of the serine palmitoyltransferase

Sptlc2, a key enzyme for de novo synthesis of ceramides

(Hanada, 2003), led to a strong reduction in ceramide levels

(Figure 2B). Knockdown of ceramide synthases 2 or 6 also

reduced ceramide levels, including individual species with spe-

cific fatty acid chain lengths that have previously been associ-

ated with each enzyme (Figures 2A, 2B, and S2B) (Levy and

Futerman, 2010). Total ceramide levels were decreased, and

sphingomyelin levels were increased, upon knockdown of the

sphingomyelinase Smpd1 (Figure 2B). Following this consistent

pattern, ceramide levels were significantly increased upon

knockdown of Ormdl1, a negative regulator of ceramide synthe-

sis (Breslow et al., 2010), and upon knockdown ofUgcg, the cer-

amide glucosyltransferase (Figure 2B). An unexpected reduction

in total ceramide levels was however measured upon the deple-

tion of the acid ceramidase ASAH1. This observation supports

the notion that ASAH1 may function bimodally, mediating not

just degradation but also synthesis of ceramides, consistent
ork and Characterization of Cytokine Release upon shRNA-Mediated

shown together with main metabolites (rounded rectangles) and 24 selected

s show relative expression of 24 selected genes after stimulation of RAW cells

CR. Bold protein names indicate selection for lipidomics analysis. Metabolites

o independent experiments with technical triplicates. FC, fold-change; Spha,

iations, see text or legend and Table S1.

RNA RAW cell lines, filtered based on knockdown efficiency.

ulated with IMQ (5 mM), or LPS (100 ng/ml) or CpG (5 mM) for 16 hr. Data are

D of four technical replicates. *p < 0.0001.

sentative of at least five independent experiments and shown as mean ± SD of

es stimulated for 16 hr with IMQ, CpG, and LPS as measured by ELISA. Values

d averaged overmultiple shRNA cell lines. Black dots represent the averages of

ent averages of all shRNA cell lines per gene. Indicated genes are selected for

.

ata are combined of at least five independent experiments.

fter stimulation with LPS and CpG and IL-6 release screening results of shRNA

hRNAs per gene. Data are combined of at least five independent experiments.
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See also Figure S2 and Table S2.
with previous in vitro data (Okino et al., 2003) (Figure 2B). Given

that most of these perturbed genes are members of larger

conserved gene families, based on either sequence similarity

or enzymatic function, the strongly altered lipid states revealed

an absence of redundancy between these family members.

This goes against previous findings suggesting functional redun-

dancy within the ORM1-like gene family (Siow and Wattenberg,

2012).

Perturbing sphingolipid metabolism unexpectedly led to

changes in glycerophospholipid levels, with strongest changes

observed upon knockdown of Sptlc2 and Ormdl1 (Figure 2B).

Knockdown of Lyst and Cln3, both involved in lysosomal

trafficking, only led to significantly altered glycerophospholipid

levels (Figure 2B). In summary, the selected set of genetic per-

turbations targeting sphingolipid metabolism translated to a

remarkable heterogeneity in lipid states, revealing considerable

tolerance of cells to such perturbations and establishing these

as an effective method to alter cellular lipid composition and

study the functional consequences. Additionally, this membrane

lipidomics analysis underscored a strong link between the sphin-

golipid and glycerophospholipid metabolic networks.

Hierarchical clustering of the average fold-changes per lipid

class and per cell line separated genes associatedwith ceramide

synthesis from those associated with other processes (Fig-

ure 2B). We therefore applied the hierarchical interaction score

(HIS) for network reconstruction between perturbed genes
174 Cell 162, 170–183, July 2, 2015 ª2015 The Authors
(Snijder et al., 2013), analyzing hierarchical patterns among the

measured lipid species of each perturbation (Figure S2C). The

HIS correctly inferred the known metabolic hierarchy of the

different enzymes starting with SPTLC2, over CERS2 and

CERS6, to ASAH1 and SMPD1 (Figure S2C). This intriguingly

suggested that diverse membrane lipid states resulting from

genetic perturbations may be instrumental for the unbiased

reconstruction of gene-centered metabolic networks, as also

shown in yeast (da Silveira Dos Santos et al., 2014).

A Logical Circular Network of Coregulated Lipids
Given the broad changes in lipid composition over the diverse

genetic perturbations, we next analyzed the coregulation of lipid

abundance at the level of individual lipid species to expose the

larger organizational principles that orchestrate membrane lipid

composition. Comparing the lipid abundance of individual lipid

species across all nine perturbations revealed pairs of positively

and negatively correlated lipids (Figure 3A). Such positive corre-

lations, indicative of lipid coregulation, occurred both within and

between lipid classes (Figure 3B). Hierarchical clustering of the

complete lipid-lipid correlation matrix describing 29,890 unique

pairs of lipids revealed ten distinct lipid clusters of positively

correlated lipids, organized along the diagonal of the matrix

(Figure 3C). Neighboring clusters showed positive correlations,

whereas distant clusters were negatively correlated with each

other (Figure 3C). Intriguingly, analysis of the lipid composition



per cluster revealed sphingolipids to be distributed over all

clusters, whereas significant separation of glycerophospholipid

classes was observed between different clusters (Figure 3D).

Positively correlated glycerophospholipid classes reflected their

proximity in the metabolic pathway, as clusters 8 and 9, the two

largest clusters, contained most PS and PE species, and clus-

ters 1 to 5 grouped most PC and PG species. Interestingly, the

strong negative correlation between these two sets of clusters

identified that a loss in PS and PEwas associated with increased

levels of PC, as observed for sh:Sptlc2 and sh:Ormdl1 and

inversely for sh:Cln3 (Figure 2B). This general trend has also

been reported in yeast and may be indicative of conserved

metabolic adaptation (Boumann et al., 2006). Positive correla-

tions therefore indicated coregulation between lipids driven by

proximity in metabolic pathways and structural dependencies.

Negative correlations, in turn, reflected compensation or adapta-

tion between lipids within the cell. Analysis of fatty acid chain

length properties per cluster and lipid class further revealed

that separation of lipid species from the same class into different

clusters was associated with significant changes in chain length,

following a trend over neighboring clusters (p < 0.01 – p < 0.001,

Figure 3E).

Interestingly, the most distant lipid clusters 1 and 10 were

positively correlated, which suggested that this hierarchical

view on cluster organization was a suboptimal representation

of lipid coregulation (Figure 3C). We therefore transformed the

lipid-lipid correlation matrix into a network where nodes repre-

sented individual lipid species and edges represented positive

correlations of 0.7 or higher (Figure 3F). Strikingly, this correlation

network displayed near-perfect circularity. Continuity across the

different lipid clusters was revealed by mapping different lipid

features, including lipid class, and fatty acid linkage and chain

length, onto the network (Figures 3F, S3A, and S3B). This

network view furthermore emphasized the distribution of sphin-

gomyelins and, to a lesser extent, ceramides across the network,

indicative of a general strong coregulation of individual sphingo-

lipids with glycerophospholipids (Figure 3F).

Color-coding each node in this network according to the log2
fold-change in lipid abundance revealed significant (p < 3.6 3

10�28) bimodal separation of increased and decreased lipids

for each of the nine perturbations (Figure 3G). These bimodalities

reflected an imbalance in the lipid state of each perturbation,

supporting the notion that opposite segments of the circular

network were also defined by metabolic adaptation. Validating

the relevance of this circular network beyond this dataset, the

results of an independently performed lipidomics analysis in

RAW cells stably silencing Smpdl3b were projected on this

network, which also led to the significant separation of increased

and decreased lipids (p < 1.2 3 10�5), revealing yet another

unique lipid state (Figure S3C) (Heinz et al., 2015).

Cellular membranes are known to be comprised of lipids with

similar fatty acid chain lengths (Holthuis and Menon, 2014; van

Meer et al., 2008). Indeed, themajority (58%) of lipid coregulation

was found between lipid species with fatty acid chain length

differences of two or less, with only ceramides not following

this trend (Figure 3H). To assess if the circular network reflected

the spatial organization of lipids, we used publicly available lipi-

domics measurements of subcellular membrane fractions of
RAW cells (Andreyev et al., 2010). Mapping of lipids enriched

in the different fractions identified distinct segments of the circu-

lar network predominantly connecting lipids enriched in either

plasma membrane (PM; p < 7.3 3 10�6) or ER (p < 0.00022)

fractions (Figure 3I). Consistent with previous reports, the core-

gulated long-chained PS and PE species were mostly enriched

in the plasma membrane fraction, while the PC species were

mostly ER-enriched (Figure 3I) (van Meer et al., 2008). Calcu-

lating the significance of the clustering of enriched lipids on

the circular network further revealed significant clustering of

nuclear-enriched lipids (p < 4.3 3 10�6), but not of mitochon-

drial-enriched lipids (Figure 3I).

As an alternative to a protein-centered view on metabolic net-

works, this analysis of lipid coregulation offered a unique view of

the mammalian lipid landscape, revealing a potentially universal

logic in lipid organization. Intriguingly, circularity is not typically

observed in biological coregulation networks (Costanzo et al.,

2010) and may therefore be a unique property of metabolic

networks.

Functional Annotation of the Lipid Landscape in TLR
Signaling
We next sought to resolve the diverse TLR-phenotypes at the

level of earlier TLR signaling and integrate the phenotypes with

the abundance of individual lipid species. IL-6 release into the

supernatant is a late read-out of TLR activation, as it depends

on TLR expression, trafficking, signaling, and cytokine transcrip-

tion. Therefore, TLR4 plasma membrane levels at steady state

as well as LPS-induced internalization dynamics over time (Fig-

ure S4A) were monitored for all 24 genetic perturbations and

controls using representative cell lines (Figure 4A; Table S1).

Silencing of eight genes showed significant reductions of TLR4

surface levels at steady state (>40% reduction at p < 0.01)

although none of the genetic perturbations led to a reduction

stronger than sh:Tlr4 (87.5%) (Figures S4B–S4D). LPS-depen-

dent activation of TLR4 led to partial receptor internalization at

5 min and a near complete internalization after 30 min for all

monitored perturbations (Figures 4A, S4C, and S4D). Normal

TLR4 surface levels at steady state were observed for most of

the genetic perturbations that led to the strongest reductions in

LPS-induced IL-6 release (Figure S4E). However, increased

internalization of the receptor 5 min post-stimulation was

observed for several perturbations including the three that led

to the strongest reductions in IL-6 release (Cers2, Cers5,

Ormdl2). Sphingolipid metabolism therefore mostly modulated

LPS-induced IL-6 release by altering the trafficking and likely

subsequent signaling of TLR4 after stimulation rather than by

altering the steady-state TLR4 surface levels.

To monitor changes in early TLR signaling we performed time

coursemeasurements of TLR-induced Il6 transcription for a sub-

set of genetic perturbations including the nine cell lines analyzed

by lipidomics (Table S1). Strong changes in Il6 transcript levels

were observed, while peak Il6 transcript levels were maintained

at 10 hr post-stimulation for all tested cell lines (Figures 4B and

S4F), indicating that sphingolipid metabolism affected early

TLR signaling, modulating the amplitude not the dynamics of

TLR-induced Il6 transcription. Integration with the correspond-

ing IL-6 release phenotypes could separate changes in TLR
Cell 162, 170–183, July 2, 2015 ª2015 The Authors 175
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signaling from defects in cytokine secretion. As expected, most

of the cell lines tested displayed altered Il6 transcription

coherentwith themeasured changes in IL-6 release (Figure S4G).

Surprisingly though, knockdown of Cers2 showed increased

Il6 transcription but decreased IL-6 release, suggestive of

enhanced TLR signaling being followed by a post-transcriptional

block, potentially at the level of secretion (Figures S4F and S4G).

Indeed, intracellular staining of IL-6 after stimulation revealed a

strong perinuclear accumulation in a subset of Cers2 silenced

cells, while no intracellular accumulation was observed in the

controls (sh:GFP or sh:Tlr4) (Figure S4H). Knockdown of Cers2

did however not affect the regulated exocytosis of chemokine

CCL5 (Lacy and Stow, 2011), as its TLR-induced release was

not reduced (Figure S4I).

Integration of TLR-dependent read-outs with the changes in

lipid abundance could allow functional annotation of individual

lipids across the lipid landscape. To identify the changes of lipid

abundance associated with, for instance, TLR4 surface levels,

we analyzed consistent trends over all nine perturbations. This

correlation analysis revealed potential functional relationships,

as exemplified by the negative correlation (r = �0.84) between

the relative abundance of ceramide C20:0 and TLR4 PM levels

(Figure 4C). An increase of this lipid species, strongest in

sh:Ormdl1 and sh:Ugcg, was associated with reduced TLR4

levels at the plasma membrane (Figure 4D). However, the strong

coregulation in the abundance of lipid species identified in this

study necessitated a more global analysis of potential lipid func-

tion. Therefore, correlations between each TLR-related process

and the relative abundance of each lipid were calculated (n =

2,205; Table S2) andmapped onto the lipid coregulatory network

(Figures 4E–4H). This resulted in highly significant (p < 3.1 3

10�63) separations of positive and negative correlations between

functional readouts and lipid abundance (Figures 4E–4H and

S4J). Comparing the functional annotations for TLR4 PM levels

with Il6 transcription and IL-6 release revealed different yet over-

lapping segments of the circular network to be positively and

negatively correlated (Figure 4E–4H). This suggested that
Figure 3. Analysis of Lipid Abundance Reveals the Circular Organizati

(A) Scatter plots show example pairs of lipids whose relative abundance over the

Red lines indicate linear fit. Data are combined of three independent experiment

(B) Analysis of the fraction of correlations that link lipids of the same lipid class (wh

combined of three independent experiments and shown as mean.

(C) Hierarchical clustering of the lipid-lipid correlation matrix. Rows and columns c

strongly positively correlated lipids. Lipid cluster numbers indicated on the right.

(D) Analysis of the number of lipids in each cluster per lipid class. Width of the bar

and shown as mean.

(E) Normalized fatty acid chain lengths for selected clusters and lipid classes. Lip

the longest fatty acid side chain per class. Data are combined of three independ

(F) Network visualization of the positive lipid-lipid correlations. Edges are correlat

acid bonds, chain length, and lysolipids, respectively (see legends). Data are com

(G) Nodes of the network are color-coded based on the fold-change of relative lip

are combined of three independent experiments and shown as mean.

(H) Cumulative percentage of lipid coregulation as a function of the maximum fat

combined of three independent experiments and shown as mean.

(I) Left: network visualization of lipid enrichment in either ER (blue) or plasmamem

measured lipids. Right: significance of the clustering on the circular network fo

absolute difference between enrichment scores of direct neighbors in the network

Subcellular fraction data are from http://lipidmaps.org combined of three indepe

See also Figure S3.
distinct sets of lipids were functionally related to each step in

TLR signaling. The distribution of the functional annotations on

the network did not considerably change depending on the

different ligands for TLR-induced IL-6 release or time points for

LPS-induced TLR4 surface levels, despite changes at the indi-

vidual lipid level (Figures 4E–4H and S4J).

The similarity in predicted lipid function of neighboring and

coregulated lipids in the lipid landscape is consistent with the

view that the majority of membrane lipids function in concert

with other lipids. Mapping the different correlations onto the cir-

cular lipid network revealed short-chained glycerophospholipids

and sphingomyelins as positively associated with TLR4 surface

expression (Figures 4E and 3F). The majority of ceramides

were predicted to negatively modulate TLR4 surface expression,

similar to studies reporting that accumulation of ceramides at the

plasma membrane led to altered surface expression of the nico-

tinic acetylcholine receptor (Gallegos et al., 2008). Among the

other lipids negatively correlated with TLR4 PM levels were the

glycerophospholipids with the longest fatty acid chains associ-

ated with the plasma membrane, as well as their lysolipids (Fig-

ure 4E). Lysolipids facilitate membrane curvature required for

vesicle trafficking (Holthuis and Menon, 2014). The subset of

lipids negatively correlated with both IL-6 release and TLR4

PM levels contained most PS species (Figures 4E, 4G, and

4H), for which individual species have been described to nega-

tively influence TLR-induced responses by disruptingmembrane

microdomains (Parker et al., 2008). Intriguingly, sphingomyelins

and ceramides were predicted to both positively and negatively

regulate IL-6 release: unsaturated sphingomyelins and short-

chained ceramides resided within the positively correlated

region of the network, while saturated or nearly saturated sphin-

gomyelins and long-chained ceramides resided within the nega-

tively correlated region at the opposite segment of the network

(Figures 4G, 4H, and S4K).

To validate the different predicted functions of sphingolipids in

TLR-induced IL-6 release, candidate lipids were selected from

the coregulated lipid clusters most enriched for either positive
on of the Lipid Coregulatory Network

nine perturbations is negatively (left panel) or positively (right panel) correlated.

s and shown as mean.

ite) or different lipid classes (gray), as function of correlation strength. Data are

orrespond to the 245 measured lipid species. Black boxes indicate clusters of

Data are combined of three independent experiments and shown as mean.

s is scaled to match (C). Data are combined of three independent experiments

id classes are colored as in (D). Chain length is normalized from the shortest to

ent experiments and shown as mean. Values are mean ± SEM.

ions of r R 0.7. Nodes are lipids. Node shape, size, and outline represent fatty

bined of three independent experiments and shown as mean.

id abundance for each of the nine shRNA cell lines as indicated in legend. Data

ty acid chain length difference per lipid class and for all (see legend). Data are

brane (PM, green) subcellular fractions. White nodes depict not enriched or not

r the enrichment in four subcellular fractions. Red lines indicate the average

, gray areas indicate the distribution of randomized repeats. NS, not significant.

ndent experiments and shown as mean.
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Figure 4. Inference and Validation of Lipid Function in TLR-Related Processes

(A) TLR4 PM levels after stimulation with LPS for indicated time points normalized to unstained and steady-state control levels for 41 cell lines silencing 24 genes.

Both box-and-whisker plots and individual line plots are shown. Lines represent mean values of two independent experiments.

(B) Il6 expression after TLR stimulationmeasured at indicated time points and normalized to unstimulated and 10h sh:GFP control for 14 cell lines. Lines represent

mean values of two independent experiments.

(C) Scatter plot shows example correlation between relative lipid abundance and TLR4 PM levels over the nine perturbations. Red line indicates linear fit.

(D) As in (A), TLR4 PM levels for sh:Ormdl1_3, sh:Ormdl1_4 and sh:GFP control. Data are shown as mean ± SD of two technical replicates *p < 0.05.

(E–H) Correlations between relative lipid abundance and measurements of selected TLR-related processes plotted on the circular network.

(I and J) Network close-up of lipids positively (I) and negatively (J) correlated with LPS-induced IL-6 release.

(legend continued on next page)
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or negative correlations (Figures 4I–4L). A determining factor in

candidate selection was the availability of synthetic lipids in a

chemically pure form. Compared to vehicle treatment, RAW

macrophages showed enhanced LPS-stimulated IL-6 release

when pre-treated with the ceramides N-C18:0(OH)-Cer or

N-C8:0(2H)-Cer (Figure 4M), validating the inferred function of

these two ceramides. Treatment with these lipids alone did not

induce IL-6 release. Conversely, LPS-induced IL-6 release after

pre-treatment with the sphingomyelin SM C24:0 or the ceramide

N-C16:0-Cer was dampened compared to vehicle treatment

(Figure 4N), validating the inferred inhibitory function of these

lipids on IL-6 release. Lipid supplementation did not affect

viability in any of the experiments (Figure S4L).

As sh:Smpdl3b was not included in the set of perturbations

that led to the identification of the lipid coregulatory network

and to the lipid functional annotations, the lipidomics analysis

of sh:Smpdl3b, performed with different infrastructure, was

used to test the predictive power of the complete functional

annotation of the lipid landscape (Figure S4M). The lipid state

of sh:Smpdl3b displayed a highly significant increase of lipids

positively associated with, and a decrease of lipids negatively

associated with LPS-induced IL-6 release (p < 2.4 3 10�8).

This, therefore, correctly predicted a TLR-induced hyperinflam-

matory phenotype upon knockdown of Smpdl3b in the same

cellular system, based solely on the changes in lipid abundance.

Validation experiments confirmed increased pan-TLR signaling

in Smpdl3b knockdown cells, and Smpdl3b knockout mice

displayed enhanced inflammation in LPS- and Escherichia coli-

induced peritonitis models (Heinz et al., 2015). Further, pre-treat-

ment of the hyperinflammatory sh:Smpdl3b cells with a set of

ceramide lipid species here predicted to act anti-inflammatory

lowered LPS-induced IL-6 release to the levels observed in

sh:GFP control (Heinz et al., 2015).

In conclusion, organization of the lipid coregulatory network

strongly reflected lipid function across the diverse steps of TLR

signaling, revealing a higher-level functional organization for

membrane lipids with predictive power at the level of single lipids

and the global lipid landscape.

The Lipid Coregulatory Network Is Conserved between
Human and Mouse
Mutations in genes associated with sphingolipid metabolism

lead to sphingolipid storage disorders associated with severe

neurodegeneration and premature death (Futerman and van

Meer, 2004). In both patients and mouse models of these dis-

eases, altered cytokine levels have been reported previously

(Barak et al., 1999; Wang et al., 2014). To test the validity of

the functional annotation of the lipid landscape in a human

setting, and independent of shRNA-mediated gene silencing,

we performed quantitative lipidomics on patient-derived fibro-
(K) Example correlation of the relative abundance of N-C18:0(OH)-Cer with LPS-

(L) As in (K), but for the negatively correlated N-C16:0-Cer.

(M) IL-6 release as measured by ELISA after pre-treatment with N-C18:0(OH)-C

representative of three independent experiments and presented as mean ± SD o

(N) As in (M), pre-treatment with N-C16:0-Cer (15 mM) or SM C24:0 (15 mM) or

periments and presented as mean ± SD of four technical replicates. *p < 0.005.

See also Figure S4 and Table S1.
blasts and their age-matched healthy controls at steady state

(Table S3). The patient fibroblasts harbored mutations associ-

ated with Gaucher disease, Krabbe disease, Farber disease,

and Chediak-Higashi syndrome (Figure 5A). Calculation of the

fold-changes of membrane lipid abundance by normalizing

against the corresponding healthy controls showed that the fi-

broblasts also displayed broadly altered lipid states, affecting

both glycerophospholipids and sphingolipids (Figure S5A).

Measuring lipid-lipid coregulation in this smaller dataset derived

from human fibroblasts significantly confirmed the circular lipid

coregulatory network derived from mouse RAW macrophages

(p < 10�222, Figure 5B). This striking overlap showed conserva-

tion of the circular organization of lipid coregulation across

species, cell types, and genetic perturbations. Plotting the

fold-change lipid abundance for each disease onto the circular

network further confirmed the bimodal separation of increased

and decreased lipids, indicating that the adaptationmechanisms

revealed by the circular organization also occurred in human

cells (Figure 5C).

Lipid Functional Annotation Predicts the TLR-Induced
Response of Patient-Derived Fibroblasts
To globally test the validity of the functional lipid annotations, we

next used the changes in lipid abundance to predict the inflam-

matory states of the patient fibroblasts. The lipid states of

Krabbe and Gaucher patient-derived fibroblasts displayed

strong positive correlations with the functional lipid annotations

for IL-6 release, predictive of a hyperinflammatory response (Fig-

ure 5D). Inversely, the lipid states of Farber and Chediak-Higashi

patient-derived fibroblasts were predictive of a dampened cyto-

kine release in response to LPS and CpG (Figure 5D). Strikingly,

TLR stimulation of the four patient fibroblast samples and corre-

sponding healthy control samples confirmed the predicted in-

flammatory states; with increased IL-6 release measured for

Krabbe and Gaucher and decreased IL-6 release measured for

Farber and Chediak-Higashi fibroblasts (Figure 5E). In unstimu-

lated conditions, all of the human samples showed only back-

ground IL-6 levels in the supernatant (Figure 5E). When calcu-

lating the log2 fold-changes in lipid abundance between pairs

of healthy controls, the resulting lipid states were not predictive

of either a hyperinflammatory or dampened inflammatory

response (Figures 5F and S5B). Indeed, when stimulated under

equal conditions, no significant differences in TLR-induced IL-

6 release weremeasured between the healthy control fibroblasts

(Figure S5C). In total, the functional lipid annotation derived from

RAW cells correctly predicted the inflammatory state of seven of

the eight different human fibroblast samples (Figure 5F). The lipid

state of the second Gaucher patient fibroblast sample was

significantly clustered on the circular network of lipid coregula-

tion (Figure S5D), but was not predictive of an altered IL-6
induced IL-6 release over all nine cell lines. Red line indicates linear fit.

er (15mM) or N-C8:0-Cer(2H) (15 mM) or respective vehicle controls. Data are

f four technical replicates. *p < 0.005.

respective vehicle controls. Data are representative of three independent ex-
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(legend continued on next page)
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release phenotype (Figure S5E), even though this was experi-

mentally shown (Figure S5F). Taken together, quantitative lip-

idomics of patient-derived fibroblasts confirmed both the lipid

coregulatory network and the functional annotation of lipids in

TLR-induced IL-6 release.

DISCUSSION

Building on the previous success of network-informed perturba-

tion strategies (Bouwmeester et al., 2004) and the ability to

quantitatively measure lipid abundance of hundreds of lipid

species (Shevchenko and Simons, 2010; Wenk, 2005), we

have developed an integrative framework that combined quanti-

tative lipidomics with genetic perturbations and their phenotypic

assessment across various TLR-related parameters. In analogy

to the early advances in transcriptomics (Eisen et al., 1998),

our approach led to the discovery of the conserved circular orga-

nization of lipid coregulation and the unbiased inference of lipid

function in innate immunity across the lipid landscape.

As the circular lipid network reflects the intersection of

different lipid metabolic pathways, metabolic adaptability, and

the spatial organization of lipids, it offers a global view of the

mammalian lipid landscape. Metabolic pathways commonly

display circular motifs, with the citric acid cycle and the urea

cycle as well-known examples. Circularity in metabolite coregu-

lation at the order of magnitude discovered here may therefore

be a fundamental property of lipid and potentially other meta-

bolic networks. The tight coregulation between lipid species of

different classes, most notably between sphingolipids and glyc-

erophospholipids, suggested that part of the robustness of cells

to loss of certain membrane lipids may stem from the fact that

they are able to functionally compensate this by increasing other

lipids (Boumann et al., 2006). It is conceivable that the identified

coregulatory interactions are context-dependent, as observed

for genetic interactions and signaling networks (Bandyopadhyay

et al., 2010). Future comparisons with lipid coregulatory net-

works measured in different physiological contexts and with

measurements of additional lipid classes such as sterols will

allow to distinguish general properties from context-dependent

variation.

Sincemembrane lipids predominantly act in concert, and given

the strong coregulation of lipids observed, annotation of functions

for single lipid species in mammalian cells is challenging andmay

be uniquely amenable to systematic approaches such as the one

developedhere. The inference of lipid function, validated at the in-

dividual and global lipid level, revealed strikingly opposite func-

tions for individual ceramide species in TLR-driven inflammation
(C) Lipid abundance plotted on the circular network for four patient fibroblast

abundance measurements is calculated and shown as in Figure 3I. Data are com

(D) IL-6 release phenotype predictions for each of the patient fibroblast sample

abundance. Red dashed line indicates p < 0.05. Colored areas indicate significant

(E) IL-6 release after stimulation with IMQ (25 mM) and LPS (1 mg/ml) as measur

unstimulated. Patient fibroblast bars are colored according to the predictions. Dat

± SD of four technical replicates. *p < 0.001.

(F) Summary of the LPS- and CpG-induced phenotype predictions for all fibrob

experiments. Blue and red areas indicate significant (p < 0.05) phenotype predic

See also Figure S5 and Table S3.
(HannunandObeid, 2011), consistentwithprevious contradictory

reports on the role of ceramide in inflammation (Józefowski et al.,

2010; Vandanmagsar et al., 2011). The functional annotations of

membrane lipids in the different TLR-related processes were

organized in a continuum on the circular lipid coregulatory

network, the implication of which requires further investigation.

The finding that the inflammatory state of perturbed cells could

be predicted based solely on this global functional annotation of

lipids indicates that the protein state of a cell mediating the in-

flammatory phenotype is strongly dependent on and intertwined

with the cellular lipid state. The concept of predicting functional

phenotypes based on different lipid states as outlined in this

work should be applicable to more membrane-dependent pro-

cesses such as cell division (Atilla-Gokcumen et al., 2014), pro-

liferation, apoptosis (Pettus et al., 2002), and autophagy (Singh

et al., 2009). Since many of the lipids measured here are present

in identical chemical form in different organisms (Guan et al.,

2010), the conservation of the identified lipid coregulation and

function is an exciting avenue for further research. The unbiased

functional annotation of lipids therefore advances lipidomics to

complement the genomic and proteomic characterization of

cells, expanding our toolset for the investigation and diagnosis

of complex diseases. Intriguingly, it may aid the informed design

of therapeutic interventions that modulate the cellular lipid state.

The framework developed here can identify the function of the

lipid landscape in additional biological settings, is scalable to

more and diverse perturbations and likely applicable to other

metabolites, invaluable for a systems-level understanding of

cellular physiology across organisms.

EXPERIMENTAL PROCEDURES

Human Fibroblasts

The following fibroblast samples were obtained from the NIGMS Human

Genetic Cell Repository at the Coriell Institute for Medical Research:

(GM02075, GM02315, GM05659). The ‘‘Cell line and DNA biobank from

patients affected by genetic diseases’’ (Istituto G. Gaslini), member of the

Telethon Network of Genetic Biobanks (project no. GTB12001) funded by

Telethon Italy, provided us with specimens of human fibroblasts.

Lipid Supplementation

All lipids were solubilized as previously described using ethanol/dodecane

(Wijesinghe et al., 2009). RAW264.7 cells were incubated for 30 min with indi-

cated lipid concentrations prior to LPS stimulation.

Lipidomics

Targeted lipidomics analysis was performed on an AB SCiex triple-quadrupole

mass spectrometer operating in positive and negativeMRMmode (BIOCRATES

Life Sciences AG, Innsbruck, Austria). Forty-threeCalibrators in seven levels and
samples. Significance of the clustering on the circular network for the lipid

bined of three independent experiments.

s are based on the correlation between lipid functional annotation and lipid

phenotype predictions (blue, increased IL-6 release; red, reduced IL-6 release).

ed by ELISA for patient fibroblasts and age-matched healthy controls. Mock:

a are representative of three independent experiments and presented as mean

last samples, colored according to the agreement between predictions and

tions as in (D).
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five internal standards (three of them were deuterated) were used to measure a

panel of glycerophospholipids and sphingolipids.

Lipidomics Data Normalization

The lipidomics results were normalized based on the sum of concentrations for

all lipid species measured in a single biological replicate. Values were next

averaged over the three biological replicates and log2 transformed against

the corresponding average concentrations measured in sh:GFP.

Network Clustering Significance

The significance of clustering of various features was calculated by comparing

the absolute difference of the given feature between a node and its nearest

neighbor as defined by the network, averaged over all nodes, with the distribu-

tion of over 10,000 repeats of the same calculation using randomly shuffled

feature values.

Membrane Fraction Enrichment Score

The lipid subcellular membrane fraction enrichment scores were calculated as

the Z score over the lipid concentrations measured for any one lipid species

over all the analyzed fractions (Andreyev et al., 2010).

Lipid Function Prediction

Functional predictions or associations for lipids were performed based on

Pearson’s linear correlation coefficients between the log2(FC) readouts of

the TLR-related functional assays and the log2(FC) in lipid levels, over the

nine shRNA cell lines.

General Statistics

P values were calculated with two-tailed t tests, unless otherwise indicated.

Correlation values given are Pearson’s linear correlation coefficients, unless

otherwise indicated.

See also the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION
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Figure S1. TLR-Driven Transcription of the Sphingolipid Metabolic Network and Characterization of Cytokine Release upon shRNA-

Mediated Silencing of This Network, Related to Figure 1

(A) TLR4-induced changes in the abundance of selected sphingolipids in RAW macrophages. Data from http://lipidmaps.org (Dennis et al., 2010).

(B) Pathway enrichment analysis of all differentially regulated genes in a genome-wide analysis of TLR4-stimulated bone marrow-derived macrophages

(BMDMs). Shown are the highest enriched lipid-related annotations. Data from http://systemsimmunology.org (Ramsey et al., 2008). Enrichment analyzed

by DAVID.

(C) Relative expression of key regulators of sphingolipid metabolism upon TLR4 stimulation over indicated time points in BMDMs and RAW cells. Relative

expression calculated as delta log10 of the FPKM, or as log2 fold-change.

(D) Scatter plot of log2 fold-change expression (x axis) versus significance (y axis; t test) of RAWmacrophages stimulated with LPS or CpG for 2 and 4 hr. Red lines

indicate p < 0.05. Strongest regulated genes are indicated. Data are combined of two independent experiments with two technical replicates each.

(E) Venn diagram shows the number of regulated genes upon TLR4 stimulation by LPS and/or TLR9 stimulation by CpG. Predominant TLR localizations indicated

in schemas. Red and green numbers in brackets indicate down- and upregulated genes respectively.

(F) LPS- and CpG-induced relative expression of selected genes separated by different branches of the sphingolipid metabolic pathway (KEGG). Boxplots group

all expression values per subnetworks, with colors corresponding to subnetwork background colors. Abbreviations are as in Figure 1. Data are combined of two

independent experiments with two technical replicates each.

(G) Knockdown efficiencymeasured by qRT-PCR of all 129 shRNA cell lines, normalized to sh:GFP. Each dot represents one cell line. Green dots were included in

the screen, red dots were excluded due to insufficient knockdown efficiency. Threshold and median knockdown efficiency are indicated. Data are mean of

technical triplicates.

(H) IL-6 release after stimulation with LPS or CpG, and IFNb release after stimulation with Interferon-stimulatory DNA (ISD) or pdAdt in sh:Sphk1_1 and sh:GFP.

Data are representative of three independent experiments.

(I) IL-6 release after stimulation with LPS, CpG or IMQ after 16 hr measured in selected shRNA cell lines and sh:GFP. * indicates p < 0.005. Data are representative

of five independent experiments and shown as mean ± SD of four technical replicates.

See also Table S1.
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Figure S2. Quantitative Lipidomics of Nine Stable shRNA Cell Lines Targeting Sphingolipid Metabolism Reveals Strongly Altered Lipid

States, Related to Figure 2

(A) Lipidomics measurements of sh:GFP control cell line shown as log10-transformed lipid concentrations (mM).

(B) Values are log2 fold-change relative abundance of selected ceramide species in sh:Cers2 (black bars) and sh:Cers6 (gray bars) relative to sh:GFP.

(C) Part of the sphingolipid metabolic pathway as defined by KEGG (left) compared to the hierarchical interactions (Snijder et al., 2013) between proteins inferred

from changes in lipid abundance (right). Arrows indicate inferred hierarchy; known metabolic connections are indicated in black, unknown inferred interactions

indicated in dark blue. Line thickness represents strength of hierarchical interaction. Spha: Sphinganine; Spho: Sphingosine; GluCer: Glucosylceramide. (A–C)

Lipidomics data are combined of three independent experiments and represented as mean.

See also Table S2.
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Figure S3. Further Characterization and Validation of the Circular Lipid Coregulatory Network, Related to Figure 3

(A) Lipid clusters as identified in Figure 3C indicated in different colors on the lipid coregulatory network. Lipids that could not be assigned to any single cluster are

indicated in gray.

(B) Visualization of diverse measurements on the network: lipid abundance in sh:GFP (far left), the number of unsaturated bonds (left), the type of linkage (right), or

lysolipids (far right). For lipid abundance and the number of unsaturated bonds the significance of clustering of these properties are displayed below the

respective networks. Color-coded as indicated in corresponding legends.

(C) Left: Relative lipid abundance in sh:Smpdl3b (Heinz et al., 2015) mapped onto the lipid network. Color-coded as indicated in legend. Significances of

clustering of these features on the network are displayed.
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Figure S4. Inference and Validation of Lipid Function in TLR-Related Processes, Related to Figure 4

(A) Histograms of TLR4-PE PM levels measured by FACS at steady state or after LPS (100ng/ml) stimulation at indicated time points in wild-type RAW cells.

(B) Histogram of steady-state TLR4-PE PM levels measured in sh:Tlr4 and sh:GFP cell lines analyzed by FACS.

(C and D) Screening results of TLR4PM levels unstimulated (C) and after 5min (D) of LPS (100 ng/ml) stimulation in loss-of-function cell lines stained with TLR4-PE

and measured by FACS. Values are log2 fold-change of mean fluorescence intensity relative to sh:GFP. Indicated are genes with strongest knockdown

phenotypes.

(E) Vector plot of log2 fold-change TLR4 PM levels from 0 to 5min (x axis) versus log2 fold-change in LPS-induced IL-6 release (y axis). Vector origin (dot) indicates

0 min and end (arrow) indicates 5 min.

(F) Time course measurements of CpG-induced Il6 transcription in the nine knockdown cell lines used for lipidomics (gray line) normalized to unstimulated and

10h sh:GFP control (black line).

(G) Scatter plot of log2 fold-change CpG-induced Il6 mRNA levels (x axis) versus log2 fold-change in CpG-induced IL-6 release (y axis). Indicated are the nine

genes selected for lipidomics analysis.

(H) Immunofluorescence microscopy of IL-6 protein levels in sh:Cers2_4, sh:GFP and sh:Tlr4 reveals perinuclear accumulation after 8h stimulation with LPS in

sh:Cers2_4. IL-6 (red), actin (green), DAPI (blue). Scale bars indicate 10mm. Inserts show close-ups of indicated areas.

(I) IL-6 and CCL5 release after stimulation with LPS, CpG, or IMQ, in sh:GFP and sh:Cers2_4.

(J) Correlations between relative lipid abundance and measurements of LPS-induced TLR4 PM levels (top) and IMQ-induced IL-6 release (bottom) plotted on the

circular network. Nodes of the network are color coded based on the strength of the correlation as indicated in legend.

(K) Average (gray bars) and SEM of the correlations between lipid abundance and IMQ-stimulated IL-6 release, per lipid fatty acid chain length, for ceramides (top)

and sphingomyelins (bottom). Dark gray lines indicate chain length trends. Background colors vary with strength of correlation (red for negative, blue for positive

correlations).

(L) Cell viability as measured by CellTiter-Glo luminescence, expressed in relative luminescence units (RLU) after supplementation with selected lipids (gray) or

respective vehicle control (black).

(M) Scatter plots between relative lipid abundance independently measured for sh:Smpdl3b (x axis) against functional lipid correlations (y axis) for all measured

TLR-induced IL-6 release. Dots represent individual lipids, colored based on the local data density. Strong and significant positive correlations of IL-6 release

predict a pro-inflammatory phenotype, as confirmed (Heinz et al., 2015).

P-values are indicated above panels. (A) and (B) Data are representative of at least two independent experiments. (C) and (D) Data are combined of two inde-

pendent experiments with two technical replicates each. (F) Transcriptional data are combined of two independent experiments and shown as mean ± SEM (H)

Microscopy results are representative of two independent experiments. (I) Data are representative of at least two independent experiments. * indicate p < 0.05.

ns: not significant. (L) Data are representative of at least three independent experiments.
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Figure S5. Lipidomics Analysis of Patient-Derived Fibroblasts Confirms Functional Lipid Annotations, Related to Figure 5

(A) Lipidomics analysis of 245 lipid species in four human fibroblast samples. Values are shown as log2 fold-change relative to the respective healthy controls.

Each dot represents a lipid species, color coded per lipid class; dot size indicates significance. Vertical gray bars separate lipid classes.

(B) IL-6 release phenotype prediction for the log2 fold-change normalized lipid states of pairs of healthy controls derived from the same biobank, based on the

correlation between lipid functional annotation and lipid abundance. Red dashed line indicates p < 0.05. Colored areas indicate significant phenotype predictions

(blue, increased IL-6 release; red, reduced IL-6 release).

(C) IL-6 release after stimulation with IMQ as measured by ELISA for different healthy fibroblast samples (see legend).

(D) Lipid abundance plotted on the circular network for the second Gaucher patient fibroblast sample relative to the respective healthy control. Significance of the

clustering on the circular network for the lipid abundance measurements is shown. Red line indicates the average absolute difference between abundance of

direct neighbors in the network; gray area indicates the distribution of randomized repeats.

(E) As in (B), for the second Gaucher patient fibroblast sample.

(F) IL-6 release after stimulation with IMQ asmeasured by ELISA for the second Gaucher patient fibroblast sample and age matched healthy control (see legend).

Mock: Unstimulated. (A) and (D) Data are combined of three independent experiments. (C) and (F) Data are representative of three independent experiments and

presented as mean ± SEM of three technical replicates. * indicated p < 0.005; ns: not significant.

See also Table S3.
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