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High-content screening using automated fluorescence micros-
copy has allowed us to objectivize and quantify a great vari-
ety of cellular parameters, and it has provided an attractive 

platform to perform genetic or chemical perturbation screens at 
unprecedented accuracy and robustness due to the statistical power 
derived from the large number of events monitored. In particular, 
the approach has enabled the visualization of the influence of cell-cell 
and cell-microenvironment interactions, which contribute to popu-
lation-level phenotypes1. It has further facilitated the high-through-
put screening of co-culture systems, identifying phenotypes of the 
individual subpopulations, as well as resolving the interplay between 
cell populations that may contribute to an integrated drug response.

Automated microscopy has not yet been adapted for the screen-
ing of non-adherent and adherent leukocytes present in blood as 
a model to study immunology, even as traditional microscopy has 
proven crucial to understanding the complex interaction dynamics 
of the immune system2. Because other high-throughput screening 
technologies have been used to measure the effect of indirect fac-
tors on immune response propagation, such as signaling proteins 
and soluble cytokines, automated microscopy can be expected to 
provide the unique spatial resolution and throughput required to 
quantitatively screen the modulation of direct signaling by cell-
cell contacts (receptor-mediated signaling) that drives an immune 
response. Such information on cell-cell contacts in blood for large 
drug libraries is of particular interest, as many successful drugs 
affect properties of cells that are not cell autonomous but rather rely 
on the modification of the relationship between cells; this is best 
illustrated by the recent success of cancer immunotherapy3.

Modulation of both the innate and adaptive immune systems is 
a highly successful strategy in the treatment of systemic diseases 
such as inflammatory disorders and cancer, for which the innova-
tion of targeted biological or chemical agents is at the forefront. 
For instance, the immunomodulatory drug pomalidomide, which 
induces cytotoxic T cell and NK cell activity, and immune-check-
point inhibitors, such as the monoclonal antibody ipilimumab 
(which is specific for the T cell–inhibitory receptor CTLA4)4, alter 
the balance of co-stimulatory and co-inhibitory signals that man-
age self-tolerance and regulate T cell responses5. In both of these 
examples, the drug mediates cellular interactions that result in the 
death of the target cancer cell, a concept that underlies many of the 
immunomodulatory drugs that have proven successful in treating a 
variety of malignant diseases4.

Here we describe a high-throughput image-based screening 
method and analysis algorithm that robustly quantifies the immu-
nomodulatory potential of small molecules and other therapeutics 
by measuring the changes in the physical interaction of leukocytes. 
With this method, phenotypic drug screening can be expanded to 
help realize entities that harness the inherent ability of effector cells, 
within peripheral blood, to propagate signals and function through 
direct physical contact—a major goal of immunotherapy.

RESULTS
Systematic quantification of leukocyte cell-cell contacts
We designed a pipeline to directly assay biologicals and chemi-
cal agents for their immunomodulatory properties, by measuring 
changes in cell-cell contacts of peripheral blood mononuclear cells 
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(PBMCs) ex vivo using population-wide single-cell microscopy 
of PBMC monolayers (Supplementary Results, Supplementary 
Fig. 1a and Online Methods). Individual cell types were identified 
using fluorescently tagged antibodies, in various non-overlapping 
combinations, specific for extracellular markers that are unique 
to the PBMC subpopulations of interest. This revealed exten-
sive cell-cell interactions between the different subpopulations  
(Fig. 1a). Because the method requires only small amounts of mate-
rial for each test, all of the assays can be performed in the blood of 
an individual donor, which reduces background inflammation due 
to human leukocyte antigen (HLA) mismatching. To assess whether 
the observed interactions among cells were functionally meaning-
ful and to benchmark the assay, we made use of four biologicals 
that are known to decrease or increase selected cell-cell contacts: a 
major histocompatibility complex class II (MHC-II)-blocking anti-
body, two clinically used antibodies (rituximab and blinatumomab; 
Supplementary Fig. 1b) and lipopolysaccharide (LPS).

The interaction between T cells and professional antigen-pre-
senting cells (APCs), including dendritic cells and macrophages, is 
an essential step in triggering an adaptive immune response. APCs 
present foreign antigens via MHC-II receptors to CD3 receptors on 
T cells (also known as T cell receptors; TCRs), which can lead to 
a targeted immune response6. Antibodies that recognize the extra-
cellular portion of the MHC-II receptor are known to efficiently 
obstruct this interaction (Supplementary Fig. 1b, left). Indeed, 
when we stimulated PBMCs from a healthy individual with vesicu-
lar stomatitis virus (VSV) in the absence or presence of an MHC-
II-specific blocking antibody, the percentage of CD11c+ dendritic 
cells that were in direct contact with CD3+ T cells was significantly 
reduced by the presence of the MHC-II-specific blocking antibody 
before infection, on average from 33% to 25% (P < 0.028; Fig. 1b) 
as measured over a total of 124,059 cell-cell contacts. Such interac-
tion frequencies are, however, dependent on several variables that 
directly influence the outcome. In the scenario just described, they 
include: the fraction of all cells that are CD11c+ (xa), the fraction of 
all cells that are CD3+ (xb), and the total cell density or overall clus-
tering index, which can be expressed as the fraction of all PBMCs 
that directly contact one or more PBMCs (xi). Indeed, all three vari-
ables showed fluctuations in the MHC-II-specific blocking antibody 
experiment described in Figure 1b, among others, due to stimu-
li-dependent differences in cellular activation (Supplementary  
Fig. 1c)7, which need to be statistically accounted for when inter-
preting such interaction frequencies. The fraction of cells that are 
of type ‘A’ and that interact with cells of type ‘B’, assuming that cel-
lular positions and relative abundance of subpopulations are kept 
equal but cellular identities are shuffled, is given by the formula  
E = xa × xb × xi, where xa is the fraction of cells of type A, xb is the 
fraction of cells of type B, and xi is the fraction of cells with one 
or more cell contacts. Bootstrap analysis confirmed the equation, 
consistent with the fact that the three variables function as indepen-
dent probabilities in this context (Supplementary Fig. 1d). Scoring 
alterations in the interaction frequency relative to E then gives an 
internally normalized interaction frequency, which we have termed 
the ‘interaction score’. Further information on the interaction score 
can be found in the Online Methods. The interaction score indi-
cates how much the observed interaction frequency deviates from 
what would be expected by random chance occurrence, which 
makes it robust to alterations in the relative abundance of either 
subpopulation, as well as to alterations in overall cell density or in 
the number of cell-cell contacts. We have used arrows to indicate 
the directionality of the interaction score, i.e., relating to the frac-
tion of type A cells that interact with type B cells, which can deviate 
from the fraction of type B cells that interact with type A cells, in 
the case of many-to-one cell-cell contacts. After correcting for these 
influences, we found that the MHC-II-specific blocking antibody 
not only reduced the CD11c+→CD3+ T cell interactions under the 

VSV-stimulated conditions but that it also did so in the unstimu-
lated state (Fig. 1c and Supplementary Fig. 1e), which is likely 
explained by reduced antigen ‘scanning’ by T cells8,9. As expected, 
the presence of either an isotype IgG control antibody or a blocking 
antibody to CD54, which functions as a co-stimulatory signal and is 
typically not highly expressed on unstimulated monocytes10, did not 
significantly alter the CD11c+→CD3+ T cell interaction score in the 
unstimulated conditions (Supplementary Fig. 1f). Furthermore, 
contact-dependent immune activity was described as early as 1970, 
in which it was observed that clustering of CD14+ monocytes that 
were stimulated by bacterial lipopolysaccharides (LPS) is an activa-
tion-associated signal11. Accordingly, the interaction score revealed 
a significant (P < 0.05) increase in the interaction between CD14+ 
monocytes after LPS treatment (Supplementary Fig. 1g). In these 
examples, immune activation and modulation can strongly drive 
cell proliferation, which could potentially affect the number of cells 
within the interacting subpopulations that are being measured. To 
additionally confirm that the interaction score was robust to either 
gain or loss of cellular subpopulations, we simulated fluctuations in 
the proportion of type A and type B cells over a wide range (5% to 
95%) and then measured the interaction score of A↔B; synthetic 
data provided a controlled environment without compounding 
factors, such as background inflammation. As expected, we found 
that the score was inherently robust to modifications in cell number 
(Supplementary Fig. 2a), which enabled us to measure altered cell-
cell contacts even in the context of cell proliferation and cell death.

The anticancer biologicals rituximab and blinatumomab induce 
NK cell–to–B cell-mediated killing (Supplementary Fig. 1b, mid-
dle) and T cell–to–B cell-mediated killing (Supplementary Fig. 1b, 
right), respectively, in which the function of the killing depends 
on direct physical contacts between effector and target cells12–14. 
Incubation with these biologicals resulted in not only a dose-de-
pendent increase in the respective interaction scores but also in 
a concomitant loss of target cells (Fig. 1d,e and Supplementary  
Fig. 2b). In the case of blinatumomab, the results were indepen-
dent of the marker that was used to identify the B cells as the tar-
get cell type (Fig. 1e). Even with the reduction in the population of 
the target B cells, the interaction score was still increased, due to 
the score’s normalization to variations in subpopulation numbers  
(Fig. 1d,e), as described above. Thus, the recapitulation of the 
effects of biologicals with well-defined mechanisms of action, as 
measured by population-wide imaged-based screening and spatial  
analyses, validates this method for use in an immunomodulatory 
screening campaign.

Although biologicals have great precision and efficacy in their 
mode of action, it would be advantageous to identify small chemical 
entities with specific immunomodulatory properties that could be 
more easily handled and manufactured. To determine what classes 
of drugs, if any, have unknown immunomodulatory effects, we sur-
veyed a collection of 1,402 existing drugs (approved, investigational 
or experimental; Supplementary Data Set 1 and Supplementary 
Table 1) to see whether one could compare their effects with those 
of drugs with known immunomodulatory properties, such as ste-
roids and NSAIDs.

Chemical rewiring of the leukocytic interaction network
Leukocyte interactions across the 1,402 compounds were screened 
in quadruplicate, which resulted in the identification and analysis of 
the cell-to-cell contacts of over 80 million PBMCs from the blood 
of a single healthy donor in 7,680 wells. To induce a higher level 
of cell-cell contacts, alterations of PBMC cell-cell interactions were 
measured after immune stimulation with VSV, which induces an 
interferon (IFN)-based inflammatory immune response that is aimed 
at halting viral replication15. Pairwise combinations of four major 
PBMC subpopulations were stained after infection, using immuno-
fluorescence. At the population-level, VSV infection, as measured 
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by a single-cell green fluorescent protein (GFP) reporter, displayed 
high reproducibility (Fig. 2a and Supplementary Fig. 3a), and 
VSV preferentially infected myeloid lineage cells (Supplementary 
Fig. 3b), as expected7. Eighty compounds were found to decrease 
VSV infection, whereas 22 increased it (below −2 or above 2 s.d., 
with P < 0.05; Fig. 2b and Supplementary Fig. 3c). Notably, sev-
eral known anti-inflammatory compounds, including corticoster-
oids, led to increased VSV infection (Fig. 2b and Supplementary  
Fig. 3d), which may indicate a functional blockage in cellular sig-
naling pathways that rely on soluble factors and, furthermore, that 
these pathways are active in our model16.

After analyzing all 246 × 106 cell-cell contacts measured in the 
screen, we observed that the monocyte-lineage cells had signifi-
cantly higher numbers of direct neighbors than the lymphocyte-
lineage cells (Fig. 2c). We evaluated the interaction scores between 
the distinct subpopulations and observed the highest scores among 
and between CD11c+ and CD14+ monocytes (Fig. 2d), and lower 
(yet higher than those by random chance occurrence) interaction 
scores between all measured monocyte-lymphocyte pairs. In con-
trast, interaction scores of around zero, on average, were observed 
between B cells and T cells, and from T cells to any of the other cell 
types, which was indicative of baseline cell-cell contact frequencies 
equal to those expected by random chance occurrence for T cells 
(Fig. 2d). Overall, many more compounds were found to alter only 
leukocyte cell-cell contacts (11.6%) than those altered by only virus 
infection (2.5%) at 2 s.d. (Fig. 2e). Similarity in the molecular regu-
lation of cell-cell receptor-mediated contacts would be expected to 
lead to similarity in the drug-induced alterations of those cell-cell 
contacts. Indeed, comparison of the overall results revealed the 

highest similarity in the modulation of cell-cell contacts among and 
with monocyte-lineage cells (Fig. 2f).

To analyze the chemical modulation across the entire library, 
drug annotation enrichments over all interaction scores were cal-
culated and displayed by hierarchical clustering (Fig. 2g; the full list 
of compounds and their specific immune modulation phenotype is 
attached as a resource in Supplementary Data Set 2). Inspection 
of the enriched drug classes that altered PBMC cell-cell contacts 
revealed the presence of four groups, which comprised predominant 
classes of drugs known to modulate the immune system: (i) steroidal 
anti-inflammatory compounds, such as glucocorticoids, that bind 
to steroid hormone receptors (Fig. 2g, dark gray); (ii) nonsteroi-
dal anti-inflammatory drugs (NSAIDs), including arachidonate  
5-lipoxygenase, and cyclooxygenase inhibitors (Fig. 2g, gray);  
(iii) drugs acting on or mimicking the signaling of the sympathetic 
nervous system, including catecholamines, adrenaline, dopamine, 
and associated receptor agonists and antagonists (Fig. 2g, light 
gray); and (iv) a group containing compounds that either have been 
described to act on other systems or were previously unreported 
drug classes (Fig. 2g, yellow). Comparison of the top 140 drugs 
with the strongest changed interaction scores to the 140 drugs 
with the strongest cytotoxicity revealed an overlap of only 11 drugs  
(7%; Supplementary Fig. 3e), indicating that the cell-cell contact 
analysis did not have a bias toward drugs with strongly altered cell 
population sizes.

Treatment with steroidal anti-inflammatory compounds not only  
led to strong increased VSV infection, as expected by their mechanism 
of action, but it also showed significant enrichment for decreased 
CD14+ cell interactions (Fig. 2g,h). Steroidal anti-inflammatories  
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Figure 2 | Screening for chemical modifiers of PBMC cell-cell contacts. (a) Scatter plot showing reproducibility of VSV infection in four replicates 
(average of two replicates per axis). Dots correspond to compound, and color indicates data density. (b) Average change in VSV infection per compound 
(z-score-normalized) relative to the significance per compound (−log10(P value)). Selected anti-inflammatory compounds are indicated. (c) Distributions 
of the number of direct contacts (cell-cell neighbors) per cell type tracked, normalized to the maximum of each distribution; values were aggregated  
over all 1,402 drugs screened. Data are mean ± s.e.m. (d) Left, interaction scores of each pairwise combination averaged over screen. n.a. (gray boxes),  
not measured. Right, visualization of the average interaction scores as an interaction graph. (e) Percentage of compounds with unique or mixed 
phenotypes at 2σ significance. (f) Multidimensional scaling plot of the similarity between results relative to each measured interaction. Green lines 
connect interactions whose screening results are ≥0.25; “Corr.” indicates the Pearson’s linear correlation coefficient. (g) Hierarchical clustering of the 
enrichment (−log10(P value) × sign of the phenotype (either positive or negative interaction score)) for selected top-enriched drug classes over all of 
the interactions measured, including the VSV infection phenotype. Blue and red boxes indicate increased or decreased spatial phenotypes, respectively. 
Manual drug annotation class shown below. Light gray numbers in parentheses indicate number of compounds in that class. “Neuro.” indicates the class 
of neuromodulating drugs. (h) Interaction graphs of the average phenotypes for selected annotations from g. Red and green arrows indicate decreased 
or increased average interaction scores (z-score-normalized), respectively; black arrows indicate no change. The data in a–h represent a large-scale 
screen performed in replicate or quadruplicate, at single-cell resolution (13,152 cells per well for 7,680 wells). Measurements in a,b were performed in 
quadruplicate. In c–f, summary statistics were combined for 1,402 compounds. The groups in g,h are represented by ≥3 compounds per annotation.  
The data in c–h represent 246,650,047 cell-cell interactions.
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regulate the immune system via the glucocorticoid receptor and 
reduce the transcriptional activity of pro-inflammatory tran-
scription factors, including NF-κB and IRF3 (ref. 17), which may 
explain the observed decreased clustering of CD14+ cells and 
increased amounts of VSV infection (Fig. 2g,h). CD14+ cell clus-
tering was, in fact, the cell-cell interaction with the most significant 
correlation to VSV infection over all of the compounds measured 
(Supplementary Fig. 3f, left), with increased amounts of infec-
tion being associated with decreased clustering and vice versa 
(P < 2.3 × 10−5; Supplementary Fig. 3f, middle). The increased 
amount of CD14+ cell clustering observed after LPS stimula-
tion (Supplementary Fig. 1g) combined with previous reports11  
singled out CD14+ cell clustering as the predominant spatial read-
out of innate immune activation and suggested that some com-
pounds reduced virus infection by activating an innate immune 

reaction; these observations were further confirmed using PBMCs 
from a second healthy donor (Supplementary Fig. 3f, right).

In contrast to the effects seen with the steroidal anti-inflam-
matory compounds tested, we observed that several NSAIDs 
reduced CD11c+ cell clustering, CD19+ B cell clustering and CD11c+ 
cell→CD3+ T cell interactions (Fig. 2g). NSAIDs function by inhib-
iting the synthesis of pro-inflammatory signaling molecules and 
chemo-attractants derived from arachidonic acid18, including eico-
sanoids such as prostaglandins and leukotrienes. Notably, reduced 
CD11c+ cell→CD3+ T cell interactions were observed for sulindic 
sulfoxide, salicin, celecoxib, tomelukast and zafirlukast, thus reach-
ing the same phenotype across diverse modes of NSAID action  
(P < 3.8 × 10−5; Supplementary Fig. 3g)18. This suggested a strong 
sensitivity of the CD11c+ cell→CD3+ T cell interaction to modula-
tion by NSAIDs, consistent with previous reports19.
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Furthermore, several drugs altered leukocyte cell-cell interac-
tions with known mechanisms of action that were not directly 
linked to the previously described steroidal, NSAID or nervous-sys-
tem-related mode of action. Quinine compounds strongly reduced 
CD11c+ cell→CD3+ T cell interactions (Fig. 2g,h), consistent with 
their anti-inflammatory effect and interference in MHC presen-
tation, which has led to their current clinical use in the manage-
ment of rheumatoid arthritis and other inflammatory diseases20. 
Cholesterol-lowering drugs also reduced CD11c+ cell→CD3+ T cell 
interactions (Fig. 2g), which possibly could have been mediated by 
the well-documented dependency of MHC-II antigen presentation 
on cholesterol-enriched lipid rafts21,22. A subset of cholesterol-low-
ering drugs, the HMG-CoA reductase inhibitors (statins), which 
also reduced CD11c+ cell↔CD3+ T cell interactions (Fig. 2g and 
Supplementary Fig. 3h), have been reported to also function in a 
cholesterol-independent way via blocking of leukocyte function-as-
sociated antigen (LFA)-1-mediated adhesion to and co-stimulation 
of lymphocytes23. Incubation with angiotensin-converting enzyme 
(ACE) inhibitors, particularly enalapril and its active metabolite 
enalaprilat, led to increased CD14+ cell clustering, as well as increased 
CD14+ cell↔CD19+ B cell interactions (Fig. 2g and Supplementary 
Fig. 3h), which potentially could be related to their reported inhibi-
tory effect on the expression of the chemokine CCL2 (also known as 
MCP1)24, which inhibits B cell migration25. Taxifolins and catechols 
included plant flavonoids with known antioxidant and anti-inflam-
matory activity26, which led to decreased CD14+ cell clustering (Fig. 
2g,h). Furthermore, N-acyl-L-homoserine lactones (components of 
the bacterial quorum-sensing machinery) led to increased CD3+ T 
cell clustering and reduced CD19+ B cell→CD3+ T cell interactions 
(Fig. 2g), which have been shown to activate the immune system 
and increase survival in pretreated mice of a mouse model of bacte-
rial infection27, and a related compound has been shown to interfere 
with T cell differentiation28, although the mechanism of their recog-
nition and effect on T cells is as yet unresolved.

Finally, the screen revealed several neurological modulators, 
which mimic or interfere with signaling of the nervous system 
(particularly the sympathetic nervous system) that regulates a 
close physiological connection between the nervous and immune 
systems, as having immunomodulatory potential29. For instance, 
modulators of the neurotransmitter γ-aminobutyric acid (GABA) 
signaling increased CD19+ B cell clustering (potentially indicat-
ing activation; Fig. 2g). GABA, which is expressed on most PBMC 
subpopulations30, has been shown to have an anti-inflammatory 
role in mouse models of autoimmune disorders involving B cells, 
including multiple sclerosis31 and rheumatoid arthritis32, suggesting 
that it may be involved in B cell–mediated effects. In addition, ago-
nists and antagonists of the β-adrenergic receptors altered several 
CD3+ T cell–centered cell-cell contacts (Fig. 2g), consistent with 
the reported expression and function of the β-adrenergic receptors 
on lymphocytes33. β-adrenergic receptor agonists increased CD3+ 
T cell→CD11c+ cell interactions and decreased both CD3+ T cell 
clustering and CD3+ T cell→CD19+ B cell interactions, whereas 
β-adrenergic receptor antagonists enriched for decreased CD19+ B 
cell→CD3+ T cell interactions (Fig. 2g), which is likely related to 
the diverse effects of β2-adrenergic receptor signaling on distinct 
subsets of T cells that have been reported previously34.

Taken together, image-based screening of PBMCs enabled the 
exploration and categorization of the chemical rewiring of the 
leukocyte cell-cell interaction network, which revealed results 
consistent with a variety of previously reported studies, and all 
of these observations were made from a single phenotypic screen 
performed on the leukocytes of a single donor blood sample. 
The screen described here identified small compounds that can 
modulate and inhibit immune function, implicated novel modes 
of action for several compounds and existing drugs, and validated 
numerous effects through imaging.

Crizotinib increases interactions between T cells and APCs
An example of drugs with previously unknown immunomodula-
tory propensities are the inhibitors of the receptor protein tyrosine 
kinases (RTKis), the use of which led to increased interactions 
between CD11c+ cells and CD3+ T cells (Figs. 2g and 3a), despite 
the fact that RTKis have rarely been shown to have immunomodu-
latory effects35,36. The observed enrichment resulted from the strong 
phenotypes obtained for both enantiomers of the RTKi crizotinib 
(Fig. 3b). (R)-Crizotinib (hereafter referred to as crizotinib) is an  
inhibitor of the MET, ALK and ROS1 kinases37 that has been 
approved for the treatment of ALK-rearranged non-small-cell lung 
carcinoma (NSCLC) and is under investigation for the treatment of 
several additional solid tumors.

We repeated the leukocyte interaction screen using the entire 
drug library and a blood sample from a second healthy donor, with-
out background cell stimulation by VSV infection, and found that we 
could reproduce the specific crizotinib effect, namely that the RTKi 
drug class was the strongest-enriched drug class over all cell-cell  
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expression (as determined by RNA-seq analysis) in SW480 cells after 72 h 
of 2 μM (R)-crizotinib treatment relative to that in cells treated with DMSO 
(yellow box indicates genes that were significantly upregulated (by one-
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by crizotinib treatment (b). In a, dots indicate individual genes, and dot 
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Data in d,e are representative of three (d) or four (e) experiments.
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interactions (Fig. 3c), with a significant increase in the number of 
interactions between CD11c+ cells and lymphocytes (i.e., mono-
cyte-marker-negative cells) observed after crizotinib treatment 
(Supplementary Fig. 4a). Because MHC-to-TCR contact-depen-
dent signaling drives APC→T cell interactions and downstream 
activation, we assayed for altered MHC expression after crizo-
tinib treatment of PBMCs from additional healthy donors, using 
flow cytometry, and observed a dose-dependent increase of 
surface-expressed MHC-II levels on CD11c+ cells that was not  
observed in cells that were treated with an unrelated cytotoxic com-
pound (digitoxin) or with DMSO (Fig. 3d). Furthermore, addi-
tion of an MHC-II-specific blocking antibody strongly decreased  
the crizotinib-enhanced interaction between CD11c+ mono-
cytes and CD3+ T cells, indicating that MHC-II upregulation 
mediated the observed immunomodulatory effect (Fig. 3e).  
Comparison of the T cell compartment after ex vivo crizotinib 
incubation of PBMCs indicated that there was a crizotinib-induced 
CD4+ T helper 1 (TH1), but not TH2, response, which is indicative 
of an inflammatory and cytotoxic immune milieu (Fig. 3f and 
Supplementary Fig. 4b).

Expression of genes encoding MHC-I and MHC-II molecules is 
partially under the control of overlapping transcription factors38, and 
MHC-I’s ability to present self-antigens is a crucial factor in mount-
ing a successful anticancer immune response3, in which increased 
MHC-I expression and antigen presentation on cancer cells is a desir-
able effect in the treatment and maintenance of cancer39. We there-
fore measured the transcriptional response using RNA sequencing 
(RNA-seq) analysis in the colorectal-adenocarcinoma-derived cell 
line (SW480 cells) after treatment with 2 μM crizotinib (Fig. 4a and 
Supplementary Data Set 3). The genes upregulated by crizotinib 
treatment showed significant enrichment for MHC-I annotations 
(Fig. 4b,c), including those encoding all three major MHC-I cell 

surface receptors (HLA-A, HLA-B and HLA-C), the invariant chain 
β2-microglobulin (B2M) (Fig. 4c) and factors involved in antigen 
presentation, as well as peptide processing, loading and trafficking 
(Fig. 4c). Although MHC-II expression is typically restricted to pro-
fessional APCs, the gene encoding the invariant chain of MHC-II 
(CD74) was also significantly upregulated on SW480 cells after 
crizotinib treatment (Fig. 4c). Crizotinib-enhanced expression of 
MHC-I on the SW480 cell surface was confirmed by flow cytom-
etry (Fig. 4d,e).

Analysis for the enrichment of transcription-factor-binding sites 
in the upregulated genes revealed a strong enrichment of binding 
sites for CREB and ATF (Fig. 5a), both of which are important tran-
scription factors for the expression of MHC-I and MHC-II class 
molecules; these transcription factors further regulate and cooper-
ate with the MHC-class-specific transcription factors CIITA and 
NLRC5 (refs. 38,40). Indeed, we observed increased phosphoryla-
tion of both CREB and ATF after crizotinib treatment of SW480 
cells (Fig. 5b and Supplementary Fig. 5a), as well as increased lev-
els of the CIITA and NLRC5 transcripts (Fig. 5c).

We recently identified the spectrum of targets for crizotinib in 
SW480 cells, using chemical proteomics41, and among the most 
abundant interactors in these cells was the macrophage-stimulating 
1 receptor (MST1R; also known as RON), a close MET homolog. 
Crizotinib has been described to have a dissociation constant of 
25 nM to MST1R42 and to inhibit MST1R with a half-maximal 
inhibitory concentration (IC50) of approximately 200 nM43, and 
KINOMEscan results have shown 100% binding of MST1R at 1 μM 
(R)-crizotinib41. MST1R is a known negative regulator of MHC-II 
expression and immune function in mice, as activation by its ligand, 
MST1, leads to decreased phosphorylation of the transcription 
factor STAT1 and decreased CIITA expression44,45. Furthermore, 
because naive MST1R-knockout mice show increased immune cell 
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Figure 5 | Immunomodulatory effect of crizotinib is mediated by MST1R inhibition. (a) Analysis for transcription-factor-binding site enrichment in 
genes that were upregulated in Figure 4a. Filled circles correspond to annotations, circle sizes scale with the number of genes present in the annotation, 
and colors indicate local data density. (b) Representative western blot analysis for the phosphorylated and total level of the transcription factor CREB, 
and for the level of phosphorylated ATF, after incubation of SW480 cells with crizotinib. Tubulin was used as a loading control. (c) qPCR analysis for the 
expression of the indicated genes (relative to expression of the housepkeeping gene GAPDH) after incubation with 10 μM crizotinib. Data are mean ± 
s.e.m. (d) Representative western blot analysis for MST1R levels in lysates from SW4870 cells in which expression of the indicated siRNA was induced.  
(e) MFI of MHC-I expression after overnight induction of the indicated siRNAs. (f) qPCR analysis for the expression of the indicated genes (relative 
to GAPDH expression) after incubation with 1 μM BMS-777607. Data are mean ± s.e.m. (g) Interaction scores of CD11c+→CD3+ cells after overnight 
incubation of human PBMCs from a healthy donor with crizotinib and/or MST1. In box-and whisker plots, boxes denote 25th to 75th percentiles, and 
whiskers indicate the maximal data points present within 1.5× IQR from the top and bottom of the boxes of technical repeat values. In b–g, data are 
representative of three (b,d,e,g)or four (c,f) experiments. In c,f,g, P values were determined by a t-test; *P < 0.05.
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infiltration in lungs46, we thus speculated that crizotinib treatment 
could increase MHC expression by inhibition of MST1R.

We used inducible short hairpin RNAs (shRNA) to target MST1R 
expression in SW480 cells and found that the loss of MST1R func-
tion coincided with increased cell surface expression of MHC-I 
molecules after 72 h of efficient MST1R knockdown (Fig. 5d,e and 
Supplementary Fig. 5b–d), whereas no such increase was observed 
for the negative control shRNA (Fig. 5e). Furthermore, treatment 
of SW480 cells with a more potent and specific MST1R inhibitor, 
BMS-777607 (ref. 47), also led to strong upregulation of CIITA, 
NLRC5 and HLA-B expression (Fig. 5f), whereas, as expected, 
treatment with the ligand MST1 did not induce expression of these 
genes (Supplementary Fig. 5e). Increased cell surface expression of 
MHC-I after treatment with BMS-777607 was confirmed by flow 
cytometry (Supplementary Fig. 5f), whereas incubation with MST1 
showed no change in cell surface expression of MHC-I (Fig. 4d and 
Supplementary Fig. 5f). Notably, combined incubation of SW480 
cells with MST1 and crizotinib led to reduced cell surface expres-
sion of MHC-I to levels comparable to those seen with crizotinib 
treatment alone (Fig. 4d), and further competition experiments 
using crizotinib and MST1 in blood from a healthy donor revealed 
a full reversal of the crizotinib-increased interactions between CD3+ 
T cells and CD11c+ monocytes (Fig. 5g).

To test whether crizotinib also induced MHC-I expression in vivo, we 
injected crizotinib or vehicle alone into immunodeficient SCID mice 
that harbored a SW480 xenografted tumor. Using immunohistology,  
we found that tumors from the crizotinib-treated mice had sig-
nificantly higher levels of MHC-I expression than tumors from the 
vehicle-treated control mice (Fig. 6a,b), which recapitulated the  
ex vivo immunomodulatory effect of crizotinib in vivo.

The immunomodulatory effect of crizotinib was not limited 
to blood from healthy individuals or the SW480 colon carcinoma 
cell line; analysis of publicly available transcriptomics data of an 
ALK-positive NSCLC-derived cell line that was made resistant to 
crizotinib by prolonged incremental exposure to the drug (up to  
1 μM) also revealed increased expression of MHC-I- and MHC-II-
encoding genes relative to that observed for the crizotinib-sensitive 
parental H3122 cell line48 (Supplementary Fig. 6a–c). We con-
firmed this by qPCR, measuring strong upregulation of transcript 
abundance of CIITA, NLRC5 and HLA-A after crizotinib treatment 
of the parental H3122 cells (Supplementary Fig. 6d). Furthermore, 
we performed chemical proteomics with the racemic mixture of cri-
zotinib in H3122 cells, which revealed extensive binding of MST1R 
also in this setting (Supplementary Table 2). Thus, crizotinib 
interacted with MST1R and led to increased expression of MHC-
molecule-encoding genes also in this cell line model for NSCLC, a 
disease for which crizotinib is clinically approved. Of note, MST1R 
may be a relevant crizotinib target in NSCLC, as a meta-analysis of 
15 studies measuring gene expression in lung cancers showed con-
sistent and significant upregulation of MST1R specific to NSCLC 
(Supplementary Fig. 6e).

The presentation of self-antigens on MHC-I by cancer cells is 
a key step in the anticancer immune response of the host and is 
essential for several checkpoint inhibitor treatments that are cur-
rently under investigation39. To test the immunomodulatory poten-
tial of crizotinib in primary patient-derived material, PBMCs from 
a patient diagnosed with chronic myelomonocytic leukemia who 
had greater than 70% CD33+ and CD34+ blast cells in peripheral 
blood were incubated ex vivo with crizotinib. Crizotinib-treated 
peripheral blasts showed a twofold increase in cell surface expres-
sion of MHC-I as measured by flow cytometry (Fig. 6c), as well 
a concentration-dependent increase in T cell↔blast interactions 
as measured by automated microscopy (Fig. 6d). The antican-
cer effects of genetic ablation and chemical inhibition of MST1R 
have been shown in vivo in mouse models of lung cancer and have 
revealed increased CD8+ T cell infiltration of tumors, resulting 

in reduced metastasis45. Taken together, our data suggest that the  
crizotinib-mediated MST1R inhibition and the subsequent increase 
in cell surface levels of MHC-I on colon, lung and blood cancer cells  
may aid an anticancer immune response and be beneficial for  
clinical use in combination with immunotherapy for a range of 
malignancies (Supplementary Fig. 6f)8. A clinical trial that com-
bines treatment with crizotinib and CTLA-4 blockade by ipili-
mumab for the treatment of NSCLC (NCT01998126) may reveal 
whether clinical anticancer immune responses benefit from the 
immunomodulatory effect of crizotinib we describe here.

DISCUSSION
Here we define the possibility to systematically quantify and iden-
tify the immunomodulatory potential of drugs and biologicals in 
the complex multilineage populations in PBMCs of one individual. 
Prior to this, the technical options and models for measuring system-
wide immunomodulatory events in a high-throughput manner were 
limited, which drove the need for such a screening tool. The data 
set provides evidence for the immunomodulatory potential of ~150 
chemical agents, many of which have not been reported to display 
effects on the immune system and may thus become the objects of 
further investigation. Similarly to that of crizotinib, it is conceivable  
that the immunomodulatory potential of some of these agents 
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Figure 6 | In vivo assessment of the immunomodulatory potential of 
crizotinib. (a,b) Immunohistochemistry imaging of SW480 xenograft 
tumors stained with an antibody specific for human MHC-1 (a) and 
quantification of MHC-I expression levels (n = 3 tumors per group, and  
n = 8 images per tumor; 40× images; scale bars, 20 μm) (b) after 
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(d) after crizotinib treatment in PBMCs from a patient who was diagnosed 
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myelomonocytic leukemia (CMML). In c,d, experiments were performed 
in triplicate and are representative of three repeats. In b–d, P values were 
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unknowingly contributes to the clinical success of individual drugs. 
Although the library here was screened at a single concentration for 
each drug, it is feasible that additional effects may become apparent 
at higher, but still safe, concentrations. This large-scale functional 
characterization of the current collection of ‘common’ drugs repre-
sents a new dimension and a potential future standard assay in the 
characterization of existing and new drugs. It remains to be seen 
how often the effects reported here result in altered cell-cell inter-
actions, cell infiltrations and altered immune functions in other 
tissues. Certainly, the platform can easily be adapted to screen for 
new agents that aim at specific immunomodulatory effects. Equally 
exciting is the perspective to perform ‘personalized’ assessments  
on individual patients or healthy donors on a routine basis. The  
systematic perturbation of the immune system of an individual over 
such a varied array of pathways and processes may thus provide a 
unique functional ‘profile’ of the health status of a person, which 
is likely to depend on age, gender, diet, and transient and chronic 
infections. We illustrated how the approach could be useful in iden-
tifying agents that function in an immunomodulatory manner in 
cancer; however, other diseases characterized by increased inflam-
mation, such as rheumatoid arthritis or autoimmune diseases, 
may be particularly interesting to consider for future studies. The 
finding that crizotinib, a drug in clinical use, may exert some of its 
antitumor activity through an immunomodulatory effect not only 
helps define the full mechanism of action, but it also may broaden  
crizotinib’s therapeutic use to other indications. In general, the 
modulation of the immune system by small compounds may be a 
desirable integrated positive effect that is more common than previ-
ously expected and that may be a result of their full polypharmaco-
logical properties49,50. 

Received 21 September 2016; accepted 17 January 2017; 
published online 24 April 2017

Methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.
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ONLINE METHODS
Collection and purification of peripheral blood and bone marrow cells. 
Peripheral blood was obtained from healthy donors, from patients with CMML 
who were treated at the Medical University of Vienna/General Hospital Vienna 
and from the Austrian Red Cross. The Austrian Red Cross provided plasma 
and red blood cell (RBC)-depleted enriched buffy coats from healthy donors. 
Blood coagulation was prevented by the addition of EDTA or heparin. The 
Ethics Commission at the Medical University of Vienna–General Hospital 
Vienna approved the collection of samples from healthy donors and patients. 
All donors and patients provided written informed consent after the nature 
and consequences of the study were explained. All donors were blind to the 
end users. Peripheral blood was diluted 1:1–1:3 in PBS, and mononuclear cells 
were isolated with a lymphoprep density gradient from Axis-Shield accord-
ing to the manufacturer’s instructions. Purified cells were suspended in RPMI 
medium (Gibco) supplemented with 10% FBS and penicillin-streptomycin. For 
all experiments involving primary cells, cells were cultured in RPMI medium 
supplemented with 10% FBS and penicillin-streptomycin.

Non-adherent PBMC monolayer formation, small-molecule screening, 
viruses, reagents and cell lines. 50 nl of selected screening compounds in 
DMSO, and DMSO controls, were transferred to Corning 384-well, tissue-cul-
ture-treated clear-bottom plates by a Labcyte Echo liquid handler attached to 
a PerkinElmer high-content cell::explorer workstation. Screening-compound 
libraries were obtained from the NIH Molecular Libraries Program or as gifts 
from various groups (see Acknowledgments), or they were designed in-house. 
Selected compounds routinely underwent quality control by mass spectrom-
etry. The compounds screened are outlined in Supplementary Data Set 1.  
50 μl of culture medium containing approximately 40 × 104 cells/ml was pipet-
ted into each well of a 384-well plate and incubated at 37 °C with 5% CO2; cells 
were allowed to settle to the bottom. For virus screens, cells were incubated 
with compound for 3 h before VSV that expressed GFP was added (in 10 μl)  
at a multiplicity of infection (MOI) = 10 for 18 h. The screen in Figure 2 was 
performed in quadruplicate (global level) and duplicate (population level) 
using 384-well plates, and blood from a single healthy donor; see figure leg-
ends for technical replicate information for other experiments. For the healthy 
donor spatial screen without VSV expressing GFP, PBMCs were incubated 
with compound for 36 h. For blocking antibody experiments, anti-human-
HLA-DR (G46-6; 3 μg/ml) (eBiosciences), anti-human-CD54 (HA58; 3 μg/ml)  
(BD Biosciences) or mouse-IgG2a isotype control (C1.18.4; 1:300) (BioXCell) 
was incubated for 3 h before overnight stimulation with VSV or with  
10 ng/ml LPS (Invivogen). HLA-DR-specific blocking antibody was incubated 
overnight before treatment with crizotinib for 3 h. The indicated concentra-
tions of rituximab (anti-human-CD20; Absolute Antibody) or blinatumomab 
(Amgen, Vienna General Hospital in-patient pharmacy) was incubated with 
healthy donor blood overnight or for 48 h, respectively. Recombinant MST1 
was from R&D Systems. All screens were stopped by fixing and permeabiliz-
ing the cells with 10 μl of a solution of 4% formaldehyde and 0.01% Triton-
X114 in PBS for 10 min at room temperature. Fixative-containing medium 
was removed, and 30 μl of an experiment-dependent antibody cocktail in PBS 
was added to the cells for 1 h at room temperature; all antibodies (listed next) 
were used at a 1:300 dilution. Antibodies were selected for their ability to iden-
tify specific populations of interest: anti-human-CD19 (HIB19; allophycocy-
anin-conjugated); for B cells), anti-CD11c (3.9; allophycocyanin-conjugated; 
for the majority of dendritic cells and monocytes), anti-CD3 (HIT3a; phy-
coerythrin (PE)-conjugated; for T cells), anti-CD14 (61D3; PE-conjugated; 
for macrophages and monocytes) and anti-CD34 (4H11; allophycocyanin-
conjugated; for hematopoietic progenitors) from eBiosciences, anti-CD20 
(2H7, fluorescein-conjugated; for B cells) from BD Biosciences and anti-CD56 
(A07788, PE-conjugated; for NK cells) from Beckman Coulter were all used in 
various combinations to identify populations of interests in each experiment, 
as described in the text. DAPI (at 10 μM; Sigma) was used for the detection  
of nuclei. SW480 and H3122 cells were cultured in Dulbecco’s modified  
Eagle’s medium (DMEM) or RPMI medium, respectively, that was sup-
plemented with 10% FBS and penicillin-streptomycin. H3122 cells were a  
gift from Eric Haura (Moffitt Cancer Center), and SW480 cells were a gift  
from Walter Berger (Medical University of Vienna). The cells used in 

the experiments were routinely tested for mycoplasma contamination by  
enzyme-linked immunosorbent assay (ELISA) and PCR.

Flow cytometry. PBMCs or SW480 cells were either kept unstimulated or 
incubated with small-molecule compounds for the indicated amounts of time. 
In addition to the antibodies used for imaging, anti-human-HLA-DQ (SK10, 
fluorescein isothiocyanate (FITC)-conjugated; for the MHC-II+ population), 
anti-HLA-ABC (G46-2.6, PE- and cyanine 5 (Cy5)-conjugated; for the MHC-I+ 
population), anti-CD4 (SK3, PE-conjugated; for the T cell subset), anti-CD183 
(CXCR3-173; FITC-conjugated; for the T cell subset) and anti-CD194 (CCR4-
D8SEE; allophycocyanin-conjugated; for the T cell subset) from eBiosciences 
were used for flow cytometry. Samples were run on a BD LSRFortessa instru-
ment with Diva software and analyzed with FlowJo.

Western blots. SW480 cells were plated overnight and stimulated at the indi-
cated time points. Pellets were lysed using IP lysis buffer (50 mM Tris-HCl 
(pH 7.5), 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 50 mM NaF, 1 mM 
Na3VO4, 1 mM PMSF and 5 g/ml tosyl phenylalanyl chloromethyl ketone 
(TPCK)) and a protease inhibitor mixture for 10 min on ice before high-
speed clearance, and the protein content of the lysate was quantified using the 
Bradford (Bio-Rad) assay. Proteins were detected with rabbit anti-phospho-
CREB(Ser113) (87G3; 1:1,000), mouse anti-CREB (86B10; 1:1,000) or rabbit 
anti-RON (C81H9; 1:1,000) (all from Cell Signaling), and mouse anti-tubulin 
(Abcam; 1:5,000), which were visualized using a goat anti-mouse or anti-
rabbit (H + L) horseradish peroxidase (HRP)-conjugated secondary antibody 
(Jackson ImmunoResearch Laboratories; 1:10,000) and exposed on film.

RNA isolation and quantitative PCR (qPCR). RNA was purified from 
SW480 or H3122 cells using an RNeasy Kit (Qiagen) and was reverse- 
transcribed using oligo-dT primers and the RevertAid Reverse Transcriptase 
(Fermentas). qPCR was performed using SensiMix SYBR Green (Bioline) 
analyzed on a Rotor-Gene Q from Qiagen. Gene expression for CIITA 
(Forward (F): GGCTGGAATTTGGCAGCAC, Reverse (R): GCCCAACAC 
AAGGATGTCTC), NLRC5 (F: CTGGCCAGTCTCACCGCACAA, R: CCA 
GGGGACAGCCATCAAAATC), HLA-A (F: AAAAGGAGGGAGTTACACT 
CAGG, R: GCTGTGAGGGACACATCAGAG), and HLA-B (F: CTCATGGTC 
AGAGATGGGGT, R: TCCGCAGATACCTGGAGAAC) were normalized  
to that of the housekeeping gene GAPDH (F: GAAGGTGAAGGTCGGAGT,  
R: GAAGATGGTGATGGGATTTC).

Inducible knockdown of MST1R expression. 97-mer shRNA sequences were 
obtained as ultramer oligonucleotides (Integrated DNA Technologies; IDT),  
PCR-amplified and cloned into the inducible retroviral microRNA (miR)-E  
shRNA vector pRT3GEN (pSIN-TRE3G-turboGFP-miR-E-PGK-NeoR) as 
described previously using standard cloning techniques51. The Tet-on competent  
SW480 cells were generated by virally transducing the vector pMSCV-RIEP 
(pMSCV-rtTA3-IRES-EcoR-PGK-PuroR) and standard retroviral packaging. 
After virus infection, transformed cells were selected using 5 μg/ml puromycin 
(Sigma-Aldrich), and SW480 RIEP cells were transduced in a similar manner using 
the retroviral shRNA vector pRT3GEN. The following 97-mer target sequences 
were used: Renilla luciferase at position 713: GCTGTTGACAGTGAGCGCAG 
GAATTATAATGCTTATCTATAGTGAAGCCACAGATGTATAGATAA 
GCATTATAATTCCTATGCCTACTGCCTCGGA; MST1R at position 606: TG 
CTGTTGACAGTGAGCGATCCCGGTGACACAGACACAAATAGT 
GAAGCCACAGATGTATTTGTGTCTGTGTCACCGGGAGTGCCTACTG 
CCTCGGA; MST1R at position 2,313: TGCTGTTGACAGTGAGCGACC 
AGTGCTGATAGCAGTGCAATAGTGAAGCCACAGATGTATTGCA 
CTGCTATCAGCACTGGCTGCCTACTGCCTCGGA; and MST1R at position  
3,822: TGCTGTTGACAGTGAGCGAAGGGAGTACTATAGTGTTCAATAG 
TGAAGCCACAGATGTATTGAACACTATAGTACTCCCTGTGCCTAC 
TGCCTCGGA. Following virus transduction and selection using 2 mg/ml 
G418 (Roth), shRNA expression was induced by the addition of 2 μg/ml doxy-
cycline to the culture medium. MHC-I expression was analyzed by flow cytom-
etry 72 h after doxycycline addition. pRT3GEN-shRen.713, which expresses  
an shRNA targeting the Renilla luciferase–encoding sequence served as  
negative control shRNA. The MFI of MHC-I expression (PE-Cy5 channel) was 
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Vehicle, (S)-crizotinib or (R)-crizotinib was administered subcutaneously once 
daily at 25 mg/kg for 35 d. (S)-crizotinib or (R)-crizotinib was diluted in 1% 
DMSO, 10% ethanol, 10% cremaphore, 10% Tween 80 and 69% PBS. Mice were 
euthanized 2 h after the last administration of drugs on day 26. Tumors were 
quickly dissected, snap-frozen and kept at −80 °C until further analysis. Tumor 
sections were fixed in acetone for 10 min and rinsed in TBS. The sections were 
blocked in 3% BSA in TBS. An MHC-I-specific antibody (MHC class I clone 
W6/32; BioLegend; 1:250) was diluted in 3% BSA in TBS and incubated over-
night at 4 °C in a humid atmosphere. After incubation, the slides were rinsed 
in TBS containing 0.025% Triton-X. An Alexa-Flour-555-conjugated second-
ary antibody (Invitrogen) was diluted 1:500 in 3% BSA in TBS and added to 
the slides for 1 h at room temperature. The slides were counterstained with 
DAPI and mounted with Prolong Gold (Thermo Fisher Scientific). Images 
were taken on an LSM780 confocal microscope (Zeiss) with equal laser-line 
power settings over all of the samples. Eight random images were taken from 
three tumors per group; image analysis was performed by experimenters who 
were blinded to the identity of the samples. All experiments involving mice 
followed protocols approved by Stockholms Norra djurförsöksetiska nämnd 
(laboratory animal ethical committee Stockholm) and were in compliance with 
the 2010/63/EU directive.

Image and computational analysis. Imaging. Each well of a 348-well plate 
was imaged at 10× magnification with 2 × 2 non-overlapping images, so 
that approximately 95% of the well surface area was covered within the 2 × 2 
square. The images were taken sequentially from the DAPI, GFP, PE and APC  
channels, with lasers and bandpass filter sets set so that the channels were 
non-overlapping; a PerkinElmer Operetta or Opera Phenix automated  
spinning-disk confocal microscope was used. Fluorophores were tested for 
channel separation on each machine. The raw .tiff images were exported from 
the microscope for analysis and stored for subsequent data mining.

Illumination correction. Illumination correction was performed based on a 
novel algorithm that depends on the observation that PBMCs in the monolayer 
never fully cover the entire well but that they always leave adequate space in 
between individual cells or clusters of cells to estimate regional background 
intensities. Because we imaged each well entirely (including regions of wells 
outside of the images), we first detected regions of each image that contained 
areas outside of the well, based on image reconstruction of the full well and 
plate-wide analysis of where areas outside of the wells were most likely to 
occur. For each individual single-channel image, a two-dimensional (2D) 
polynomial with two degrees of freedom in each dimension was fit on log10-
transformed(1 + intensity) values, excluding regions of images containing 
areas outside of the well, excluding the brightest 30% of the signal (working 
under the assumption that a bright signal is not a background signal, which 
does not hold for bright-field images), and weighted to a combination of the 
inverse signal intensity (to weigh dark regions heavier) and a smooth function 
that weights edges of images heavier, as those are relatively underrepresented as 
compared to the typically brighter center of the image. Because the illumina-
tion correction function for each individual image is described in the efficient 
form of a polynomial function, goodness of fit statistics, and background pat-
terns and intensities could be compared across each image from the same 
channel from the entire plate to detect outliers (3 × interquartile range (IQR) 
from median statistics). For outliers, fits were retried with different parameters 
(excluding larger regions of potential areas outside of wells); if that failed, then 
they were corrected with plate-average background correction functions for 
images of the same channel and at the same site within the other wells. The 
remaining outlier wells were flagged as having potential technical problems. 
The algorithm has been optimized for robustness over hundreds of imaged 
384-well plates containing PBMCs, and improvements in separation of nega-
tively, singly, and doubly stained cells have been confirmed.

Background correction. Image-based small-compound screens suffer from 
the fact that small compounds themselves can be sources of a fluorescence 
signal, which can overlap in unpredictable ways with the wavelengths of the 
imaged channels. To correct for small (within 3 × IQR from median) back-
ground-intensity variations, which could also stem from other sources such 
as light source fluctuations, we further corrected for global background dif-
ferences within all images of the same channel and of each well, and across 

normalized to that observed in the absence of doxycycline. Knockdown effi-
ciency was determined by western blot analysis, as described above.

RNA sequencing (RNA-seq) analysis. SW480 cells were seeded in 6-well plates 
24 h before (R)-crizotinib was added to a final concentration of 2 μM. After 
incubation for 72 h, medium was aspirated, and cells were washed with PBS. 
Total RNA was isolated using the RNeasy kit (Qiagen), and RNA concentra-
tion was measured using the Qubit 2.0 Fluorometric Quantitation system (Life 
Technologies), using the manufacturers’ protocols. RNA integrity number 
(RIN) was determined using Experion Automated Electrophoresis System 
(Bio-Rad). RNA-seq libraries were prepared with TruSeq Stranded mRNA LT 
Sample Preparation Kit (Illumina) using Sciclone and Zephyr liquid-handling 
robotics (PerkinElmer). Library concentration was quantified using the Qubit 
2.0 Fluorometric Quantitation system (Life Technologies), and the size distri-
bution was assessed using Experion Automated Electrophoresis System (Bio-
Rad). Sequencing libraries were pooled, diluted and sequenced on an Illumina 
HiSeq 2000 instrument using 50-bp single-read chemistry. The base calls 
provided by the Illumina Realtime Analysis software were converted into a 
BAM format using Illumina2bam and demultiplexed using BamIndexDecoder 
(https://github.com/wtsi-npg/illumina2bam). Transcriptome analysis was per-
formed using the Tuxedo suite. TopHat2 (v2.0.10)52 was supplied with reads 
that passed vendor quality-filtering (PF reads) and with the Ensembl tran-
script set (Homo sapiens, e73, September 2013) as reference. TopHat2 analy-
ses were run independently for each replicate. Cufflinks (v2.1.1)53 was used 
to assemble transcripts from spliced read alignments, using both the Ensembl 
e73 transcriptome as reference, as well as de novo assembly of transcript mod-
els. Differential expression was assessed with Cuffdiff v2.1.1)54. Transcriptome 
sets of all replicates for each sample group were combined with Cuffmerge. 
Finally, cummeRbund (http://www.bioconductor.org/packages/release/bioc/
html/cummeRbund.html) and biomaRt (http://www.bioconductor.org/pack-
ages/release/bioc/html/biomaRt.html) were used in combination with cus-
tom R scripts to perform quality assessment and further refine the analysis 
results. All sequencing was performed by the Biomedical Sequencing Facility 
at CeMM (http://medical-epigenomics.org). SW480 RNA sequencing results 
are available in Supplementary Data Set 3 and at the NCBI Gene Expression 
Omnibus (GEO) database under accession code GSE93124. Transcription data 
from ALK+ H3122 cells resistant to crizotinib treatment were obtained from 
those at GEO under accession code GSE49508.

Drug-affinity chromatography and protein mass spectrometry. The crizo-
tinib affinity probe was prepared in two steps from commercially available 
3-[(1RS)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-[1-(piperidin-4-yl)-1H-
pyrazol-4-yl]pyridin-2-amine (S1068, Selleckchem) according to the literature, 
and drug-affinity matrices were prepared as described previously41. Briefly, 
affinity chromatography and elution were performed in duplicate using  
25 nmol of compound that was immobilized on 50 μl NHS-activated Sepharose 
4 Fast Flow beads (GE Healthcare Bio-Sciences) and 10 mg total cell lysate 
as protein input per replicate. For competition experiments, cell lysates were 
pretreated with 20 μM 3-[(1RS)-1-(2,6-dichloro-3-fluorophenyl)ethoxy]-5-
[1-(piperidin-4-yl)-1H-pyrazol-4-yl]pyridin-2-amine for 30 min. Eluates were 
labeled with iTRAQ (ABI), and quantitative protein mass spectrometry and 
bioinformatics analysis using the R isobar package were performed as previ-
ously reported48,55.

Xenograft mouse model and immunohistochemistry. All mice were acclima-
tized for 1 week, and they had free access to water and food during the experi-
ment. Mice were kept under a 12-h light cycle, and temperature, humidity and 
housing were kept per laboratory animal guidelines and regulations. The group 
size was based on previous experience of variability of tumor growth within 
control groups. Mice were grouped based on body weight; exclusion and inclu-
sion criteria were pre-established in the ethical permit; and outliers in body 
weight were excluded, although no mice were excluded from this study based 
on the pre-established criteria. Groups were not randomized. Severe combined 
immunodeficient (SCID) mice (5- to 6-week-old female, Scanbur; n = 3/group) 
were injected subcutaneously with 1 × 106 SW480 cells, together with a matrix 
gel (1:1), in the sacral area. Treatment was initiated 1 d after cell inoculation. 

https://github.com/wtsi-npg/illumina2bam
http://www.bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://www.bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html
http://medical-epigenomics.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93124
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49508
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Entities of Biological Interest (CHEBI) from the European Bioinformatics 
Institute (http://www.ebi.ac.uk/chebi/), as well as from the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) Compound database (http://www.genome.
jp/kegg/compound/). Overall, this retrieved 136 unique annotations for the 
compounds in our library. Enrichment scores were calculated as two-tailed 
t-tests between the phenotypes of compounds with a given annotation relative 
to the phenotypes of compounds without that given annotation.

Cell-cell interaction analysis. Pairwise distances (measured in pixels) 
between all cells in a well were calculated over a reconstruction of nuclear posi-
tions over the different images for each well. Cells were considered pairwise if  
the pairwise distance between nuclear centroids was 15 pixels. The observed 
fraction of A→B interacting cells equals the fraction of (all type A cells inter-
acting with one or more type B cell). This fraction was log2-transformed against 
the (EAB) value calculated for that well, i.e., (the fraction of type A cells of all 
cells) × (the fraction of type B cells of all cells) × (the fraction of all cells that 
have at least one or more contacts within 15 pixels). Results were confirmed to 
be insensitive to reasonable increments of the ’15-pixel’ threshold. Although 
the reference value (EAB) is independent of the direction of interaction, A→B 
and B→A can diverge as a consequence of the interaction conformation of the 
two subpopulations; for instance, so-called ‘rosettas’ that exist for a type A cell 
bound to many B cells can induce strongly divergent results between A→B 
and B→A. Readouts were corrected for plate effects, as described above, and 
analyzed further by various means, including drug class enrichment analyses 
and hit selection strategies, also as described above.

Data availability. The RNA-seq data from Supplementary Data Set 3 can be 
found at GEO under accession code GSE93124). The protein interactions from 
this publication, listed in Supplementary Table 1, have been submitted to 
the IMEx (http://www.imexconsortium.org) Consortium through IntAct and 
have been assigned the identifier IM-25603. The data sets integrated for the 
meta-analysis of MST1R expression in lung cancers (Supplementary Fig. 6e) 
was retrieved from http://www.oncomine.com (exact data sets are referenced 
below the figure). The transcription data from ALK+ H3122 cells resistant to 
crizotinib treatment were previously published and obtained from GEO under 
accession code GSE49508.

all wells of the same plate. Outlier background values per well were flagged as 
potentially auto-fluorescent-compound-containing or otherwise problematic 
wells and were discarded from the final screen statistics. Finally, illumination- 
and background-corrected images were reconstructed and stored independ-
ently for further image analysis. Improvements at the level of image quality 
and image analysis results were confirmed, and robustness of the algorithm 
was improved over hundreds of plates.

Image quality evaluation. All (illumination- and background-corrected) 
images of each plate were automatically rescaled and merged per well and per 
plate, allowing for quick visual evaluation of the quality over the entire data 
set of a single plate.

Single-cell image analysis using CellProfiler (code availability). Single-cell 
image analysis was performed using CellProfiler v2, based on DAPI-stain-
derived nucleus (‘Nuclei’) detection, expansion from nucleus for cell outline 
detection (‘Cells’), and a second and third set of expansions from Cells, to 
identify a ring outside of each cell for a local background (‘LocalBackground’) 
area sampling. Standard CellProfiler intensity, texture and shape features were 
measured from Nuclei, Cells and the LocalBackground over all channels where 
applicable. Differences between the log-transformed intensities of Nuclei and 
Cells relative to those for LocalBackground were used for the plate-wide iden-
tification of marker-positive cells in a supervised manner for the large-scale 
drug screens. Unsupervised thresholding was performed based on the predom-
inant marker-negative cell population over the entire plate. Thresholds were 
regularly visually controlled at the plate-wide population distribution level, as 
well as at the single-cell level, relating images and image-analysis results.

Support vector machine (SVM)-based machine learning for quality control. 
Iterative SVM-based machine learning was applied at the level of individual 
cells to identify poorly segmented cells, cells covered by contaminants or arti-
facts (‘blobs’), or cells identified as false positives, as described previously4,56.

Plate-effect correction. Plate-effect correction was performed using a 
weighted 2D polynomial fit, excluding positive control wells and 5% of the 
strongest outlier wells, and weighted based on a function that weights outside 
wells stronger than inside wells, and outlier wells weaker than wells closer to 
the plate median. Globally, improvements in reproducibility across replicate 
wells that came from plates with individually randomized plate layouts, as well 
as in the separation of positive and negative control wells, were confirmed.

Statistical analysis. Significance calculation and hit selection for large-scale 
screens. For the large-scale screens, data sets were normalized for plate effects 
and normalized to the median of the DMSO controls of each plate; significance 
of the hits was calculated based on a Student’s t-test of mean equals 0, over  
all replicated wells (n = 4 for the virus screens). Final infection and viability 
scores were calculated as the average over all replicates. Hits were selected 
based on P < 0.01 and on an absolute average z-score of at least 2. All other sig-
nificance scores in the figures were calculated using a two-tailed t-test, unless 
otherwise noted.

Compound annotation enrichment analysis. Compounds were annotated 
based on their annotations as stored in the database and ontology of Chemical 
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