
The question of how mammalian cells work 
in molecular, dynamic and morphological 
terms has typically been addressed with 
cell-population-averaged techniques and by 
focusing on individual cells. Given the vari-
able behaviour of individual cells, however, 
both approaches probably fail to resolve the 
full spectrum of cellular activities present in 
cell populations1–3. Despite much progress  
in measuring cell-to-cell variability4,5, few var-
iable single-cell characteristics have been put 
into the context of possible predetermining 
factors, such as the cell’s history and micro-
environment. Technical advances now allow 
us to see when and where individual cells  
display their properties of interest, and to 
what extent these properties are predictable.

As biological systems are increasingly 
being analysed at the single-cell level in a large 
number of cells, various new deterministic 
influences (that is, influences on a prior state 
or activity of a cell that determine the sub-
sequent activity or state of that cell) of cell-to-
cell variability are being revealed. Our recent 
work on population context-dependen t cell- 
to-cell variability in human tissue culture 
cells6 shows that, at least for virus infection 
efficiency and endocytosis and the under lying 
regulatory systems of these processes, this 
variability is strongly regulated in response to 
factors that shape a population of cells, such 
as cellular crowding and cell–cell contacts. 

Moreover, recent studies have revealed  
the presence of predetermining factors in the 
cell-to-cell variability of apoptosis7–9, cancer 
hetero geneity10–13, stem-cell differentiation14,15, 
the induction of pluripotency16, and nuclear 
factor-κB (NF-κB) signalling17, as well as in 
λ phage infection in Escherichia coli18,19, the 
yeast pheromone response20,21 and various 
other heterogeneous activities in prokaryotic 
and eukaryotic cells22–26.

Based on this, we propose in this article 
that quantifying the full spectrum of activi-
ties and states that occur within a population 
of non-differentiating cells is essential for 
correctly understanding their underlying 
regulation. We first explain the semantics 
used in this field. This is followed by a short 
historical context of cell-to-cell variability 
and by discussion of recent work that has 
revealed various new deterministic sources 
of cell-to-cell variability. We then argue that 
both the discussion on, and our understand-
ing of, cell-to-cell variability will be aided 
by quantifying the balance between deter-
ministic and stochastic contributions, and 
by identifying the factors that determine the 
variable behaviour of cells. Such regulated 
cell-to-cell variability will be a goldmine 
for the future of molecular cell biology, 
both in methods, by harnessing it to reveal 
molecular regulatory networks (BOX 1), and 
in concepts, as it allows the study of cellular 

activities in the spatiotemporal context of 
a cell population. For recent reviews on 
the impact of stochastic contributions on 
cell-to-cell variability, we refer the reader 
elsewhere27–31.

The semantics of noise
Cell-to-cell variability is often referred to 
as cellular noise because it may arise from 
the inherently probabilistic and discrete 
nature, called intrinsic noise, of intracellular 
biochemical reactions. Intrinsic noise can be 
experimentally observed inside single cells 
at the molecular level32,33 (recently reviewed 
in Ref. 34). Progress in the study of intrinsic 
noise over the past 10 years has shown that 
it has been adjusted during the functional 
evolution of signalling pathways. Intrinsic 
noise might be the reason why cells have 
developed certain network motifs to regulate 
cellular behaviour, as it allows them to mod-
ulate the level of uncertainty in the outcome 
of regulatory systems35,36. Such regulatory 
systems or decisions, in which the outcome 
of a cellular event is at least partially the 
result of intrinsic noise, are said to be sto-
chastic. Numerous examples of stochastic 
regulatory systems have been reviewed31,36.

Recently performed genome-wide studies 
of cell-to-cell variability in mRNA or protein 
levels in E. coli and Saccharomyces cerevisiae 
have indeed revealed a tremendous varia-
tion in the molecular make-up of genetically 
identical cells from the same population37,38. 
However, these and other studies have also 
indicated that the major source of vari-
ability in protein levels does not stem from 
intrinsic noise, but rather from upstream 
influences37–40. Such upstream sources of vari-
ability, often termed extrinsic noise, could in 
turn reflect either stochastic or deterministic 
influences. The existence of upstream sto-
chastic influences does not, however, mean 
that the system under investigation is itself 
stochastic. And, although determinism does 
not strictly imply regulation, the pre sence of 
upstream deterministic influences is likely 
to reflect complex regulatory systems that 
control the cell’s physiology.

To avoid confusion, it is important to 
distinguish between the terms cellular noise 
(both intrinsic and extrinsic) and cell-to-cell 
variability. Because the term cellular noise 
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assumes that “random or irregular fluctua-
tions or disturbances which are not part of a 
signal ... or which interfere with or obscure  
a signal”41 are causing the observed cell-to-
cell variability, we prefer to use it only when 
this randomness has been explicitly shown 
and unknown deterministic influences have 
been ruled out.

It is also important to make clear distinc-
tions between single molecular readouts and 
readouts of cellular activity or phenotype, 
as it is difficult to link molecular cell-to-cell 
variability to phenotypic cell-to-cell vari-
ability without measuring both and testing 
causal interactions. For instance, the fact 
that mRNA levels do not, at a global level, 
correlate with their corresponding protein 
levels37,42, and that protein levels may hold 
no information on protein subcellular local-
ization43,44 or post-transcriptional modifica-
tion45 — both of which regulate the activity 
of many proteins — complicates the extrapo-
lation of noise in the transcription of single 
genes to variability in cellular activity.

There is a fundamental problem in empir-
ically separating stochasticity from determin-
ism at the level of cellular phenotypes and 
activities. We can only state that a certain 
fraction of observed cell-to-cell variability is 
deterministic (there may be more determin-
ism than is currently known) and so, at most, 
only the remaining fraction of variability is 
stochastic30. As the regulation of most cellular 
activities is highly complex and still poorly 
understood, partic ularly in mammalian cells, 
we may expect seemingly stochastic variation 
in cellular phenotypes to become explained 
by newly discovered regulatory mechanisms. 
Indeed, various ‘-omics’ approaches reveal 

the existence of large numbers of novel 
molecular interactions46–48 and regulators 
of cellular activities49,50. Many of these may 
contribute to determining cell-to-cell vari-
ability. Furthermore, to make a system robust 
to intrinsic noise51, a large number of regu-
latory mechanisms must be put in place52, 
which might explain why cellular systems 
have evolved the complexity we observe. For 
instance, systematic overexpression of pro-
teins in yeast53 and the large-scale addition of 
new regulatory links in transcriptional net-
works in E. coli54 have revealed remarkable 
robustness in cellular growth.

A history of cell-to-cell variability
The concept of cell-to-cell variability 
emerged in the pre-molecular biology era 
from studies on E. coli. Delbrück realized in  
1940 that, inside living cells, uncertainty 
in the occurrence of chemical interactions 
may affect the outcome of cellular deci-
sions55, and he proposed that this might 
partly explain the large variability observed 
in the number of phage produced per virus-
infected cell56. However, he also suggested 
that such variability might have predeter-
mined influencing factors, such as cell size. 
In 1957, Novick and Weiner suggested that, 
in bacteria, the decision to switch from glu-
cose to lactose metabolism at intermediate 
lactose levels could be made by random fluc-
tuations in the levels of certain regulatory 
components involved57. Much later, Arkin 
and colleagues applied stochastic mathemat-
ical modelling of chemical interactions58 to 
the regulatory circuit that decides between 
two possible outcomes of λ phage infec-
tion in bacteria: the lytic versus lysogenic 

switch59,60. The stochastic model predic-
tions fitted with experimental population-
averaged data, suggesting that this switch 
is stochastically determined59. However, 
Herskowitz and others in the 1970s sug-
gested that this switch might be predisposed 
by the nutrient status in E. coli cells to maxi-
mize viral yield (reviewed in Ref. 60), but 
the effect of this determining factor at the 
single-cell level remained elusive. In 1976, 
Spudich and Koshland studied non-genetic 
heterogeneity in the switching dynamics 
between two modes of migration in bacterial 
chemotaxis61. using single-cell tracking and 
repeated stimulation of the same individual 
cells, they demonstrated strong individu-
ality and persistent memory in switching 
rates. uneven partitioning of molecular 
regulators during cell division, and not cell 
size or cell cycle effects, was suggested as 
the cause of this variability61. The view that 
stochasticity in biochemical interactions 
largely influences cell fate decisions gained 
strength when it was demonstrated that the 
expression of a gene inside a single living 
prokaryoti c cell could show a s ignificant 
amount of intrinsic noise32,33.

However, pioneering work with mam-
malian tissue culture cells in the 1960s and 
1970s showed large variability between 
individual cells in growth rate, cell migra-
tion and cell shaping as a consequence of 
cellular crowding and cell–cell contacts62,63. 
Furthermore, in 2005, the amount of stochas-
tic noise in the yeast switch to a mating state 
in response to pheromones was shown to be 
surprisingly small64. Predetermined factors in 
the levels of regulatory components and the 
relevant signalling capacity of cells accounted 
for approximately 99% of the variability in 
single-cell responses64. Subsequent analyses 
of the underlying regulatory circuits iden-
tified auto-regulatory negative feedback 
in the localization of a mitogen-activated 
protein (MAP) kinase scaffolding protein, 
through which fast, robust and deterministi c 
responses are achieved despite intrinsic 
noise21,65.

new-found determinism in cell fates
Two classical examples of cell fate switches 
that were thought to be largely unpredict-
able or stochastic have recently been shown 
to contain more determinism. It was shown 
that lysis after λ phage infection occurs 
primarily in large E. coli cells, whereas lyso-
geny occurs in small cells18,19. Similarly, it 
was recently shown in E. coli that the lactose 
operon switch, which can create bistability 
in β-galactosidase expression within a popu-
lation of cells, is not largely stochastic at the 

 Box 1 | Cell-to-cell variability reveals circuit architecture

Population context-dependent cell-to-cell variability is a mixed blessing. On the downside, this 
inherent variability of mammalian cells can significantly interfere with population-averaged 
measurements if population context parameters are not kept equal between experiments6. 
However, cell-to-cell variability can be harnessed to reveal novel links and causal interactions 
between phenotypic properties and molecular activities6,88–90. This relies on computational 
methods from machine learning and engineering, including Bayesian network inference and 
auto-correlative and correlative analyses, which infer relationships between individual 
parameters based on their correlation and mutual information using quantitative measurements 
of single cells. Quantitative single-cell measurements can be obtained by microscopy-based 
image analysis and fluorescence-activated cell sorting (FACS)-based assays, although spatial and 
temporal single-cell variability can only be revealed by microscopy. Moreover, FACS currently 
allows for a higher number of fluorescent reporters to be measured simultaneously91, whereas 
the amount of cellular phenotypic and environmental properties obtained by microscopy is 
mainly limited by the available image analysis algorithms92–94, although the repertoire of these 
algorithms is growing. Finally, the combination of laser capture micro-dissection and the 
development of ever more sensitive ‘-omics’ tools will allow context-dependent and broad-scale 
molecular profiling of individual cells95. Another advantage of studying cell-to-cell variability 
comes from the increased sensitivity of the measurements. Indeed, the variation in individual cell 
shapes is larger within a single unperturbed cell population than between populations perturbed 
with a set of cytoskeleton-targeting drugs67.
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single-cell level, but is strongly predeter-
mined by the cell’s physiology and growth 
rate25. In both examples, the quantification 
and correlation of the cellular outcome with 
phenotypic properties of cells were used to 
explain cell-to-cell variability, similar to our 
findings that population context parameters 
predict the efficiency of virus infection, 
endocytosis and membrane lipid composi-
tion in mammalian cells6 (fIG. 1). In all cases, 
specific phenotypic properties of single cells 
were strong predictors of cell fate or cellular 
activity outcome. Therefore, to understand 
the sources of variability in the outcome of 
regulatory networks, it is of great impor-
tance to consider their embedding in the 
cellular physiology. This also applies to the 
use of synthetic biology in addressing such 
research questions (Supplementary informa-
tion S1 (box)). Calling heterogeneous cell-
ular activities ‘noisy’ a priori overlooks the 
interesting and often unknown sources of 
regulated cell-to-cell variability.

Cells put in population context
What, then, determines variations in the 
phenotypic properties of genetically identical 
single cells? Based on recent studies, we pro-
pose that these variations are largely deter-
mined by the inherent properties of growing 
cell populations that create a large spectrum 
of microenvironmental differences to which 
cells adapt6,23, combined with the non-genetic 
memory of phenotypic states and protein 
levels9,66,67. As soon as a single cell starts to 
divide, whether it is a bacterium, a yeast cell 
or a mammalian cell, differences in cell– 
cell contacts and the available space will arise 
among the single cells, even in experimental 
settings where culture conditions are kept 
constant. That this is the predominant source 
of cell-to-cell variability is also suggested 
from the measurement of cells grown on 
micropatterns. When single human cells are 
forced to adopt an identical size and shape, 
the subcellular distribution of intracellular 
organelles is remarkably constant68, illustrat-
ing that this system has little intrinsic noise.

The population context of single-cell 
organism s. In bacteria, there is ample evi-
dence that cells in colonies display complex 
patterns of multicellular behaviour, which 
improve the overall fitness of the popula-
tion22,31,69,70. In order to accomplish this, 
bacteria communicate with other cells, form 
cell–cell contacts and sense the local cell 
density through secreted signalling mole-
cules in a process called quorum sensing71,72. 
This allows cells to adapt a multitude of their 
activities to how crowded the population is. 

As a well-studied example, Bacillus subtilis 
can undergo several mutually exclusive 
switch-like cell-fate decisions, which are 
regulated by the integrated sensing of envi-
ronmental cues, including cell density and 
nutrient level23,73,74. Although these different 
cell fates were proposed to be determined 
by random switching mechanisms result-
ing from intrinsic noise75,76, recent studies 
revealed the presence of several predeter-
mining factors in these B. subtilis cell-fate 
switches, including the growth speed of 
individual cells and as-yet-unidentified 

factors23,24,77. The different cellular behav-
iours determined by the population context 
include sporulation, genetic competence and 
motility, with sporulation and genetic com-
petence occurring at high local cell densities, 
and motility occurring in basolateral regions 
of the population (reviewed in Ref. 78).

Mammalian cell population context. In 
growing adherent mammalian cells, a few 
cell divisions combined with cell motility will 
create a wide variation in local cell densities, 
cell–cell contacts, relative location, and the 

Figure 1 | explaining the regulated cell-to-cell variability of SV40 infection. a | A histogram of 
single-cell simian virus 40 (Sv40) infection probabilities (P(infected); x-axis), as measured in 2.6 × 106 
HeLa cells. Neither median nor mean probabilities (indicated by dashed lines) are a good representative 
of the measured single-cell probabilities. the coefficient of variation (cov), a common dimensionless 
noise measure calculated by dividing the mean by the standard deviation, is 0.78 for the probability of 
infection. b | the observed cell-to-cell variability can be largely ‘explained away’ by a single predictor, 
in this case cell size (nucleus area). Importantly, in this example, Sv40 does not induce an increase in 
cell size. the local average probability of infection (y-axis, blue line and circles) is plotted against 
nucleus area (x-axis). Note that the y-axis in this graph is the x-axis of the graph in a and that the infec-
tion probability distribution of a is plotted as a function of nucleus area (cell size). Dark and light grey 
regions indicate, respectively, the ×0.5 and ×1 local standard deviations of infection probabilities.  
A fitted Hill function (red line, adjusted to different minima and maxima) reveals a Hill coefficient  
of >1, which indicates strong switch-like behaviour of Sv40 infection probability in HeLa cells as a 
function of cell size. the average cov is 0.31. c | When considering more predictors, the noise can be 
further reduced. the same single-cell Sv40 probabilities of infection are now plotted as a function of 
both nucleus area and local cell density. the average cov is further reduced to 0.21. the colour cor-
responds to the probability of infection. d | Bayesian network structure inference performed on single-
cell data reveals part of the underlying molecular network that determines the regulated cell-to-cell 
variability observed in Sv40 infection, including glycosphingolipid monosialotetrahexosylganglioside 
(GM1) levels at the plasma membrane and activated focal adhesion kinase (FAK). the displayed  
circuitry contains a coherent feedforward loop, which displays synergy to cancel out intrinsic noise 
while amplifying regulated cell-to-cell variability (see also BOX 2). results adapted from Ref. 6.
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amount of free space per cell6. Combined, 
these parameters constitute the popula-
tion context of an individual cell, to which 
each cell adapts its physiology. The fact that 
molecular mechanisms that sense these 
parameters are present in bacterial, yeast 
and mammalian cells underpins the funda-
mental and ubiquitous importance of such 
population-dependent behaviour. These 
adaptations might be in gene transcription, 
protein translation, cellular growth, rate 
of proliferation, sensitivity to apoptosis, 
metabolic activity, cell shape and/or cell 
polarization and motility. In other words, 
the majority of cellular activities might be 
affected. In turn, these activities determine 
how the individual cell behaves within its 
population, and thus how it contributes to 
shaping the population context. These com-
plex and nonlinear feedback mechanisms, 
which are functional at multiple levels of 
cellular organization, eventually determine 
the single-cell distributions of phenotypic 
properties in a population of cells (fIG. 2). 
This adaptive multicellular behaviour in 
in vitro conditions may reflect properties of 
regulatory systems that are normally at work 
in cells growing in their natural environment 
of a cell colony or a multicellular organism.

Thus, before it can be stated that sto-
chasticity underlies variability in cellular 
behaviour, one must be able to dismiss such 
confounding factors. A stochastic model 
can nicely fit a distribution of single-cell 
measure ments, even when such distribu-
tions are, in reality, determined by a complex 
set of interactions arising from the popu-
lation context. The experimental methods 
used to identify potential stochastic intrinsic 
noise in gene transcription32 cannot be easily 
developed for higher-level cellular activities, 
which are the eventual outcome of a complex 
system involving many molecules and inter-
actions. Here, a top-down approach, which 
tests the presence of predetermining factors 
in the activity, is more applicable. Analysing 
whether the activity under study repeatedly 
occurs in the same cells17,61, cells of the same 
lineage24, cells with similar phenotypic prop-
erties18,19 or cells with a similar population 
context6 can reveal such factors (fIG. 3).

Applying cell-to-cell variability
Several recent studies on cell-to-cell vari-
ability in mammalian cells seem to confirm 
the complexity of the deterministic factors 
involved, and have started to identify predic-
tive aspects of cellular activities that display 

strong cell-to-cell variability. For instance, 
the Altschuler laboratory studied how indi-
vidual cancer cells phenotypically respond 
in highly variable ways to cancer drugs79. It 
is believed that such non-genetic variability 
in these responses to drugs adds to the drug 
resistance of tumours10. Interestingly, sub-
population modelling of the hetero geneity 
observed in sets of signalling molecules 
in non-perturbed cancer cells allows for 
predictions of the population-averaged 
drug-sensitivity of cancer cells. The level of 
β-catenin, a cytoplasmic cadherin-binding 
protein that is involved in the cell–cell con-
tact-dependent regulation of cellular growth7, 
was found to be a good predictor of drug 
sensitivity. A study by Sorger and colleagues 
looked at a part of the genetic circuitry that 
regulates TRAIl (tumour necrosis factor 
(TNF)-related apoptosis-inducing ligand)-
induced apoptosis, and found that variability 
in the time between signal and apoptosis 
was determined mainly by pre-existing vari-
ations, most likely in the expression levels 
of individual components of the signalling 
pathway9. However, a modelling approach 
and subsequent validation suggested that the 
level of any individual component in this sig-
nalling pathway was insufficient in predicting 
the time of apoptosis. Instead, it was found 
that the rate of protein activation involved 
in the signal relay was highly predictive9. 
Finally, Covert’s group studied cell-to-cell 
variability in TNFα-induced NF-κB shuttling 
to the nucleus, and found that, upon repeated 
TNFα stimulation, shuttling was activated 
tenfold more often in the same cells than 
expected from a stochastic model17.

These studies show that pre-existing vari-
ations in complex sets of molecular measure-
ments can be highly predictive for a particular 
phenotypic outcome but that they do not 
explain the origin of the variation itself. We 
expect that cell population context, combined 
with cellular history, plays a significant part in 
each of these examples. For instance, the sets 
of molecules analysed might be highly influ-
enced not only by cell adhesion and cell–cell 
contact signalling (as suggested, for instance, 
by the predictive power of β-catenin levels in 
cancer drug sensitivity) but also by nutrient 
sensing and growth control. These activities 
are strongly influenced by the population 
context and history of a cell, such as the local 
cell density and location on a cell islet edge, 
or by the proliferation rate of a cell. Indeed, 
cell density-specific and edge-specific protein 
expression profiles and proliferation rates 
have been reported in solid tumours11,13, and 
the cell population context-driven switch-
ing between proliferative and invasive states 

Figure 2 | Measuring cellular activities in the full spectrum of the mammalian population 
context. a | two snapshots of a movie, recorded with time-lapse fluorescence microscopy, of a popu-
lation of human cells growing for 2 days in culture. t = 0 d shows single cells at the start of the movie 
and t = 2 d shows single cells after 2 days of continuous growth. computer-segmented nuclei, pseudo-
coloured from green to red with increasing local cell density, are shown. As the cell population (aa) 
increases, the number of cells at the edge (ab), bordering empty space, decreases and the local cell 
density (ac) increases. Owing to the increased local cell density, the cell size (ad) decreases. these 
causal interactions that shape a population of cells are indicated in the schematic network linking the 
two snapshots. the result of cellular growth is a population of cells with widely varying population 
contexts and phenotypic states. B | Because many cellular activities are regulated by population-
context dependent parameters, any cellular activity should be measured across the full spectrum of 
phenotypic states present in a population of cells. As a specific example, we show virus infection in 
human cells across the spectrum of local cell density and cell size. In this hypothetical case, the virus 
preferentially infects small cells growing in sparsely populated areas. Such a population-context 
dependent decomposition of cell-to-cell variability is essential for a full understanding of the activity6. 
the colour corresponds to the probability of infection.
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of tumour cells has now been proposed12. 
Furthermore, heterogeneous expression of 
the transcription factor OCT4 (also known 
as POu5F1) in stem cell-like cancer cells has 
been observed in ovarian tumours80.

Interestingly, in normal stem cell differ-
entiation, cell population context-dependent 
factors generally have an important role15 
and both stochastic and deterministic causes 
underlying cell differentiation in early embry-
ogenesis are being discussed81. This debate 
may be resolved in the future by study ing cell-
to-cell variability over time through apply-
ing single-cell tracking and analysis of the 
cellular context in developing embryos82, in 
a similar manner to the approaches outlined 
above for cells grown in culture. Indeed, it 
has been shown in multipotent stem cell-
like cell lines that differentiation partially 
depends on local cell density83, which may 
determine the currently unexplained hetero-
geneity in the expression of lymphocyte 
antigen 6A2–6e1, a differentiation marker in 
mouse haematopoietic progenitor cells84.

impact of cell-to-cell variability
Regulated cell-to-cell variability will have a 
large impact on many areas of molecular cell 
biology, as can be illustrated for the process 
of endocytosis. Certain endocytic ligands 
take multiple endocytic routes85,86. However, 
as this conclusion was largely based on 
population-averaged readouts or the analysis 
of a limited number of single cells, we do not 
know whether these multiple routes are taken 
simultaneously within the same single cell 
or whether the choice of route depends on 
the population context or phenotypic state 
of individual cells. The fact that endocytosis 
and membrane lipid composition are adapted 
to the population context of an individual 
cell6, and that a tight coupling exists between 
endosome subcellular localization and cell 
size and shape68, indicates the existence of 
uncharacterized regulatory mechanisms. 
These must be known in order to understand 
membrane trafficking in the context of cell 
physiology. Furthermore, it is not clear what 
the purpose is of adapting endocytosis and 
membrane lipid composition in single cells to 
the population context. Is this how cells con-
trol their phenotypic state and, if so, which 
aspects of it?

In addition, if cell-to-cell variability in 
populations of tissue culture cells is, to a 
large extent, deterministic, a fundamental 
flaw exists in several of our current experi-
mental approaches. Perhaps most urgent is 
to emphasize that we should not average a 
population of simple tissue culture cells. This 
is particularly obvious in image-based RNA 

interference screens but has, thus far, been 
completely overlooked. In addition, quantita-
tive genetic interactions could act through 
a population instead of inside a single cell. 
Describing populations of cells as mixtures 
of discrete subpopulations goes a step further 
towards addressing these problems7,79 but 
still does not capture the full spectrum of 
regulated cell-to-cell variability. Thus, also 
in functional genomics approaches, we will 
ultimately need to quantify the whole  
spectrum of single-cell activities in a popu-
lation of cells and capture the causal inter-
actions of how variations in single-cell 
activities arise in order to correctly interpret 
genetic phenotypes and interactions.

Conclusion and perspective
There is increasing experimental evidence 
that a large part of phenotypic cell-to-cell var-
iability is the result of deterministic regulatory 
processes. Two classical examples of cell-fate 

switches in which stochasticity was proposed 
to play a major part have turned out to be 
more deterministic at the single-cell level 
than was previously thought. This opens the 
door to finding more deterministic aspects 
in the cell-to-cell variability of these switches 
and other systems. We find that a common 
principle emerges, in that cell physio logical 
parameters determined by the cell population 
context and history are predictive of cell-to-
cell variability in a wide range of different 
activities. even though the numbers of mol-
ecules and molecular interactions inside sin-
gle cells are inherently noisy, this appears in 
many cases to have little effect on the eventual 
cellular activity in which these molecules have 
a role. Rather, cell-to-cell variability in cellular 
activities is increasingly found to be the con-
sequence of complex and robust regulatory 
networks that originate from, and feed back 
to, the cell population context. This creates a 
large spectrum of cellular states and activities 

Figure 3 | revealing determinism in cell-to-cell variability. a | the presence of a molecular marker 
in green cells can be used to predict the activity state of interest in the same cells (pink cells are active). 
A bistable activity, which is either induced or constitutively present and is active in red cells but inac-
tive in blue cells, is used throughout the figure for simplicity. However, these methods apply equally 
well to continuous readouts6,25,84. b | various cellular state parameters, such as cell size (shown), growth 
speed and cell cycle state, have been used to explain cell-to-cell variability6,18,19,26,38. c,d | Spatial cell 
population context parameters such as local cell density (c) and location on cell colony edges (d) can 
be another source of deterministic cell-to-cell variability6,23,83,100. e | tracing back cell-to-cell variability 
in time over multiple cell cycles may identify inherited, predetermining factors in cells of the same 
lineage24,25. f | repeated stimulation of the same cells can identify the presence of deterministic factors 
in seemingly stochastic cell-to-cell variability17,61. Note that, in all cases, care must be taken to ensure 
that the activity of interest does not determine the predictor, thereby creating false predictability. 
Furthermore, these various deterministic factors are likely to feed back on each other in space and 
time in a growing cell population.
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in a population of cells, even when these cells 
do not differentiate.

This now places cell-to-cell variability at 
the centre of molecular cell biology, generat-
ing a number of research questions for the 
future. At the phenotypic level, cell-to-cell 
variability can be used to discover new regu-
latory mechanisms, which will increase our 
understanding of how cellular activities are 
embedded in the physiology of a cell. At the 
molecular level, it will be important to under-
stand the mechanisms by which cells cancel 
out intrinsic noise while amplifying regulated 
cell-to-cell variability (see fIG. 1d and BOX 2 
for mechanisms that employ synergy in virus 
infection). To reveal these mechanisms, stud-
ies of cell-to-cell variability will eventually 

need to include aspects of the regulated sub-
cellular localization, and transient activation 
and inactivation, of molecular machinery 
components43,87. These types of analyses must 
now be done in large numbers of individual 
cells, and should be combined with measure-
ments of single-cell transcription rates and 
protein levels, and with quantitative analy-
ses of single-cell parameters of population 
context and physiological state. Such a com-
prehensive quantitative analysis of a cellular 
system is challenging, but certainly possible 
with current technologies. However, even 
without a full understanding of the underly-
ing molecular mechanisms, the amount of 
determinism in the cell-to-cell variability 
of complex cellular activities can be studied 

using top-down approaches and we can 
arrive at more accurate predictive models3,6,9. 
These top-down models can then be used as 
guidelines to uncover the relevant molecular 
circuits, enabling us to attain quantitative 
molecular models that accurately predict and 
simulate the variable single-cell behaviour 
within a population of cells.
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