
Large-scale genetic perturbation screens have been 
instrumental in many biological discoveries1–3. These 
screens use perturbations that act at the DNA, RNA 
(post-transcriptional) or protein (post-translational) 
level, providing a variety of different readouts. Given 
their fundamental importance in genetics, molecu-
lar cell biology and systems biology, these methods 
— as well as the various commonly applied statistical 
approaches to extract information from large-scale 
genetic perturbation screens4–8 — have been extensively 
described previously1–3,6,9,10.

In this Review, we do not elaborate on methods for 
genetic screens, although we provide an overview of 
the relevant techniques. We specifically focus on two 
related aspects, the importance of which only became 
apparent recently. First, we describe the phenomenon 
of cell‑to‑cell variability or cellular heterogeneity (BOX 1), 
which is a fundamental property of populations of cells, 
and discuss recent advances in the ability to quantify, 
at a large scale, multiple parameters of genetic pertur-
bation effects in thousands of single cells11–16. Second, 
we describe the general concept of using quantitative 
multivariate readouts from large-scale genetic pertur-
bation screens to infer functional interactions between 
phenotypic properties and between genes. Finally, we 
present an outlook on some of the future opportunities 
that the single-cell paradigm will bring to the unravel-
ling of biological complexity from large-scale genetic 
perturbation screens.

Genetic perturbation screens
Traditionally, genetic perturbation approaches relied 
on random perturbations of the DNA of an organism 
or cells using chemical mutagens or random inser-
tions2,17, and are also termed forward genetics. These 
approaches create a null or mutated allele, with the 
latter causing either a constitutive or, sometimes, a 
conditional mutation such as a temperature-sensitive 
mutant protein. In the past decade, sequence-specific 
genetic perturbations (also termed reverse genetics), 
such as post-transcriptional gene perturbations by 
means of RNA interference (RNAi), have increasingly 
been performed, allowing large-scale targeted knock-
down of specific mRNAs in Caenorhabditis elegans 
and Drosophila melanogaster, as well as in mammalian 
cells10,18–27. In addition, over expression screens of either 
wild-type or mutated forms of genes, usually encoded 
as cDNAs from plasmids, have also been applied28,29. 
Chemical compound or inhibitor screens (also termed 
‘chemical genetics’)30, which usually rely on post- 
translational perturbations in which the activity or func-
tion of the protein is inhibited by a small molecule, are 
also now frequently applied11,30. Furthermore, there 
are multiple genome-editing approaches that target spe-
cific regions of the genome to create a null or mutated 
allele31–33. These genome-editing approaches have now 
become more efficient and can be applied at a large  
scale34–39. Recently, specific genome targeting approaches 
using single guide RNAs (sgRNAs) for the CRISPR–Cas9 
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Cell‑to‑cell variability
The phenomenon that 
individual cells in a population 
of genetically identical cells 
display variable activities and 
behaviours.
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Abstract | Large-scale genetic perturbation screens are a classical approach in biology 
and have been crucial for many discoveries. New technologies can now provide 
unbiased quantification of multiple molecular and phenotypic changes across tens  
of thousands of individual cells from large numbers of perturbed cell populations 
simultaneously. In this Review, we describe how these developments have enabled  
the discovery of new principles of intracellular and intercellular organization, novel 
interpretations of genetic perturbation effects and the inference of novel functional 
genetic interactions. These advances now allow more accurate and comprehensive 
analyses of gene function in cells using genetic perturbation screens.
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Cellular heterogeneity
Similar to cell‑to‑cell variability. 
Sometimes, ‘heterogeneity’  
is used to indicate multiple 
discrete phenotypes within a 
population, while ‘variability’  
is used to indicate variation 
around a single phenotype. 
There is no consensus on which 
term to use in which occasion, 
and both terms are 
interchangeable.

Multivariate readouts
Phenotypic readouts consisting 
of multiple features of the 
cellular activity, state and 
microenvironment.

Functional interactions
A general term that 
incorporates protein–protein 
interactions, classical  
genetic interactions, regulatory 
interactions (such as kinase–
substrate interactions) and 
phenotypic interactions.

(clustered regularly interspaced short palindromic 
repeat–CRISPR-associated protein 9) system have been 
repurposed to induce sequence-specific repression or 
activation of gene expression at a genome scale39,40.

Different approaches have different effects. Every large-
scale gene perturbation approach has its advantages and 
disadvantages (TABLE 1). In general, with most approaches 
there is a trade-off between specificity and duration in 
establishing a measurable perturbation41,42. Importantly, 
differences in the method of perturbation and the time 
required to establish the perturbation can result in 

differences in the observable effects. Another factor to 
bear in mind is that some enzymes can sufficiently per-
form their task in a cell even when they are reduced to a 
fraction of their normal concentration and, in this case, 
knockdown by RNAi may not result in a measurable 
effect, whereas a gene deletion will do so. In addition, 
the presence of an inhibited protein in a cell can have 
a different effect from that of the absence of the same 
protein42. Changes observed in a cell population after 
a few days of gene knockdown can also be very differ-
ent from those observed in a cell population selected 
over the course of several weeks to harbour a specific 

Box 1 | Cell-to-cell variability and the microenvironment

Cell‑to‑cell variability refers to the phenomenon that no two genetically identical cells have identical behaviour and 
appearance. The extent and origins of cell‑to‑cell variability depend on the cellular activity that is compared between 
cells, but its study has revealed several common trends88,95,141–144. Chance, or stochasticity, has a considerable role in 
cellular processes that involve a small number of molecules. Small differences can lead to sizeable differences in cellular 
behaviour. However, in general, robustness in molecular mechanisms145–149 buffers the intrinsic stochasticity of molecular 
processes, and extrinsic factors are found to explain the majority of total cell‑to‑cell variability. One major component of 
such extrinsic factors, particularly in adherent cells, is the microenvironment of individual cells. Even in environmentally 
controlled cell culture conditions, a growing population of adherent cells will be continuously subjected to changing 
microenvironments as a consequence of an increase in cell number together with increased cell adhesion and 
migration79. As the population size increases, so does the local cell density but with different rates for each single cell,  
and more cells will find themselves entirely surrounded by neighbouring cells. Genetic perturbations can alter the 
distribution of microenvironmental properties of single cells (see the figure; Perturbations A and B) to such an extent  
that they dominate the effect of a perturbation in genetic perturbation screens14,16. Although it is common practice to 
normalize cellular readouts obtained in high‑throughput approaches for differences in the total cell number, the 
population context of individual cells can be substantially different even for populations with equal number of cells  
(see the figure). Therefore, multiparametric methods are required that correct for the influence of the population  
context at the single‑cell level14. Owing to the technical challenges associated with measuring single‑cell behaviour 
quantitatively for whole cell populations, many questions remain. There is no comprehensive understanding of which 
cellular processes are influenced by the population context, and few links between population context‑dependent cellular 
processes and the in vivo multicellular programming of cells have been investigated so far150,151. 
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Synthetic interaction screens
Genetic screens in which two 
perturbations are combined to 
assess the possible synergistic 
and epistatic effects between 
the two genes perturbed.

Mammalian haploid cells
Mammalian cells that harbour 
only one copy of the genome.

null allele and hence an adaptive phenotype. All of these 
factors need to be considered when designing genetic 
perturbation screens and analysing data produced from 
differing approaches.

Arrayed versus pooled screens. An important difference 
between genetic perturbation screens is whether the per-
turbation is applied all at once (pooled) or one by one 
(arrayed)3,4,10,15,26,27,43–46 (FIG. 1a). In pooled screens, a mix-
ture of single genetic perturbations — such as barcoded 
short hairpin RNAs (shRNAs)47,48, sgRNAs for Cas9 
(REFS 36,37) or random insertion of gene-trap cassettes49 
— or double genetic perturbations (using, for example, 
vectors that express 2 shRNAs48) is applied to one large 
population of cells. After positive selection of cell clones 
with a desired trait — such as resistance to a cytotoxic 
compound or pathogen, or presence of a selectable 
reporter — the original perturbations can be retrieved by 
means of sequencing, which allows the identification of  
the exact location of the genetic perturbation in each  
of the selected clones. Pooled screens are easy to carry 
out and therefore allow substantial up-scaling of the 
number of genetic perturbations tested, including  
the feasibility to carry out synthetic interaction screens at a 
large scale48. However, pooled screens rely on the use of 
a selective pressure, or the sorting of cells with a desired 
signal, to select relevant cells from a complex pool of 
perturbed cells, and on subsequent en masse identifi-
cation of all selected perturbations (FIG. 1a). Therefore, 
perturbations that affect cell proliferation or viability 
are usually lost, as are perturbations that do not confer 
complete resistance to a selective pressure. In addition, 
pooled approaches currently do not have single-cell 
resolution and cannot obtain multivariate information 
from thousands of single cells subjected to the same per-
turbation, and they are not, or only to a limited extent, 
quantitative (FIG. 1b). By contrast, genetic screens in 
arrayed format do not have these disadvantages and can 

have numerous quantitative multivariate dimensions in 
the identification of hits and in the inference of genetic 
interaction (see Supplementary information S1 (table) 
for an overview of the multivariate dimensions currently 
used in arrayed screens and methods used for reducing 
dimensionality in single-cell experiments).

Large-scale collections of single-gene deletions. For sev-
eral single-cell organisms, genome-wide collections of 
strains with viable single-gene deletions are available50–52. 
For mammalian organisms, such genome-wide resources 
do not currently exist, but there are efforts to create 
genome-wide collections of viable single-gene knock-
out mice and their cell lines53–55. Technologies of higher 
throughput are also emerging, which rely on the use 
of random mutational insertions in mammalian haploid  
cells49,56–58 or gene-editing methods in mammalian  
haploid or diploid cells34,36,37,39. CRISPR–Cas9-mediated 
gene editing shows high efficiency in diploid cells and 
is easily targeted to a specific site in the genome by an 
sgRNA, and it is likely that this technology will become 
the method of choice for large-scale gene knockout 
screening in a variety of mammalian cells36,37,39, includ-
ing tissue culture cell lines, primary somatic cells and 
stem cells. In creating such large single-gene deletion 
collections, the biggest challenge will be to grow and 
assay each cell line in such a collection in parallel, 
which will require substantial efforts and more sophis-
ticated automation and liquid-handling robotics than 
those currently used by most academic laboratories. 
Eventually, large-scale genetic perturbation screens 
in human cells may become most powerful when 
they can be applied in an arrayed format and rely on  
null deletions. A rapid, high-throughput one-by-one 
gene deletion approach in multiwell plates without the 
need for selection, similar to small interfering RNA 
(siRNA) and small compound screen methods, could 
provide such a solution in the future.

Table 1 | Advantages and disadvantages of different genetic perturbation methods

Perturbation Level of 
perturbation

Advantages Disadvantages

Haploid screens DNA (random 
transposon 
insertion)

High specificity Depends on selective pressure or sorting; 
cannot achieve single-cell resolution

Single-gene 
knockout

DNA High specificity Inefficiency in production; there can be 
adaptive mechanisms and off-target effects

Double-gene 
knockout

DNA Experimental inference of 
genetic interactions

Exponential increase in experiment size

CRISPR-mediated 
gene knockout

DNA High specificity and high 
efficiency of gene knockout

Adaptive mechanism and possible  
off-target effects

CRISPRi and 
CRISPRa

Transcription 
(mRNA)

High specificity and few 
off-target effects

–

RNAi screens (siRNA 
and shRNA screens)

mRNA Experimentally accessible 
way to perform arrayed 
screens

Off-target effects and incomplete 
knockdown efficiency

Compound screens Proteins Short time of action Poor specificity; not genome-wide

CRISPR, clustered regularly interspaced short palindromic repeat; RNAi, RNA interference; shRNA, short hairpin RNA; siRNA, small 
interfering RNA.
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Double-gene perturbations. In principle, any combina-
tion of gene perturbation methods can be applied to 
study how the combined effect of two perturbations 
aggravates or alleviates their respective single pertur-
bation effects (FIG. 1c). Testing these epistatic effects 
between two gene perturbations is a classical approach 
in genetics, as it can reveal genes co-functioning in the 
same pathway or protein complex, but its large-scale 
application has traditionally been reserved to yeast59–61. 
However, approaches combining RNAi and/ or chemi-
cal compound screening to evoke double-gene per-
turbations in mammalian cells48,62–65, as well as the 
combination of large-scale insertional mutagenesis 
screening in mammalian haploid cells with cytotoxic 
drugs66, are now increasingly being used. Clearly, pair-
wise double-gene perturbation screens rapidly become 
an enormous challenge; for example, 400 single-gene 
perturbations have 79,800 possible pairwise combina-
tions. Double-gene perturbation is therefore usually 
either restricted to a preselected set of genes for which it 
would be interesting to comprehensively map their pair-
wise epistatic effects or applied in a pooled screening 
format48,67,68 (see above).

Interpretation of genetic perturbation effects
Obviously, the interpretation of a genetic perturba-
tion effect relies primarily on the readout. Given the 
complexity of cellular activities, the number of genes 
involved and the cell-to-cell variability that these activi-
ties can display, it is now becoming clear that measuring 
multiple aspects of cellular phenotype in many individ-
ual cells is necessary to avoid sampling bias or incor-
rect interpretation of perturbation effects. In addition, 
single-cell distributions of multivariate readouts allow 
sensitive detection of perturbation effects that occur in 
only a subset of cells and offer a better characterization 
of the effect itself.

Obtaining multivariate single-cell readouts. There are 
numerous ways to obtain a multivariate set of measure-
ments from a large number of single cells, but two main 
approaches are practical when applied in large-scale 
genetic perturbation screens (FIG. 1b). These are flow 
cytometry and high-throughput imaging, and both 
methods have undergone rapid development.

In flow cytometry, the use of antibodies labelled 
with heavy isotope combinations and mass spectros-
copy as the method of detection has allowed a marked 
increase in the extent of multiplexing69. This approach 
is termed mass cytometry (also known as CyTOF)69 and 
has, in various studies, allowed the multiplexing of up 
to 35 different molecular readouts from thousands of 
single cells70,71. So far, this approach has been primar-
ily applied to quantify the levels of signalling proteins 
and their phospho-specific modifications in single cells 
to reveal molecular heterogeneity in cancer, as well as 
hetero geneous adaptation of signalling during immune 
and drug responses70,71.

In imaging, there have been important developments 
in computational methods to segment single cells within 
images of cells grown in culture or within their context 

1° DNA-level
(e.g. gene knockouts)

Primary perturbation
dimension (1°) Pooled versus arrayed screening Readouts

t > several days

t < hours or days

Pooled

Arrayed

1° DNA/RNA-level
(e.g. siRNA)

1° Protein-level
(e.g. drugs)

1° DNA/RNA-level
(e.g. siRNA)

1° RNA-level
(e.g. siRNA)

Parallel

1°

2°

High-content dimension (3°)
• Single-cell phenotypes
• Single-cell transcriptomics

Protein-level
perturbation
(Drugs, compounds
and peptides)

RNA-level
perturbation
(siRNA, shRNA
and miRNA)

R
es

ol
ut

io
n

Subcellular

Single-cell

Multicellular
(spatial)
Pooled cells
(non-spatial)

CyTOF

FACS 

Throughput (conditions measured/time)

Single-cell
sequencing

Sequencing

Plate reader

A
ut

om
at

ed
 m

ic
ro

sc
op

y

DNA-level
perturbation
(Gene trap and
CRISPR–CAS9)

• Automated
   microscopy
• Plate reader

• Sequencing
• FACS and
   CyTOF

2°
 P

ro
te

in
-l

ev
el

(e
.g

. d
ru

gs
)

2°
 P

ro
te

in
-l

ev
el

(e
.g

. d
ru

gs
)

2°
 D

N
A

/R
N

A
-l

ev
el

(e
.g

. s
iR

N
A

)

2°
 V

ar
io

us
 g

ro
w

th
co

nd
it

io
ns

2°
 V

ar
io

us
ph

en
ot

yp
es

Synergy

ParallelSynthetic

Chemogenomic

Nature Reviews | Genetics

c

a

b

Information

Figure 1 | Multidimensional genetic perturbation screens. a | The formats ( pooled 
versus arrayed) and readouts routinely used in genetic perturbation screens are shown.  
b | The graph depicts the cellular resolution, throughput and quantitative 
information for different formats and readouts in genetic perturbation screens.  
c | Combinatorial possibilities for genetic perturbation screens and the inference of 
functional interactions from multidimensional data sets are shown. Depending on the two 
types of perturbation the system is subject to, different type of genetic interactions can 
be inferred. A third dimension that can be added to all previous systems is the single-cell 
dimension.  CRISPR–Cas9, clustered regularly interspaced short palindromic repeat–
CRISPR-associated protein 9; CyTOF, mass cytometry; FACS, fluorescence-activated cell 
sorting; miRNA, microRNA; shRNA, short hairpin RNA; siRNA, small interfering RNA.
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Computer vision
A field that processes, analyses 
and interprets images in order 
to produce numerical 
information.

Microenvironment
The local environment of a 
single cell within a population 
and their relative positioning to 
each other, such as the local 
crowding of cells, the amount 
of neighbours, whether cells 
face empty space on one site 
and cells on another site, and 
whether cells are solitary.

Cell segmentation
Automated detection and 
delineation of the outside  
of single cells and nuclei in 
microscope images.

Cellular states
A quantitative description  
of the physiological states of 
single cells reflected in, for 
instance, their sizes, shapes, 
cell cycle phases, senescence 
or other detectable readouts 
such as metabolic states.

Gaussian mixture models
(GMMs). Parametric probability 
density functions that fit  
the Gaussian distribution  
to the data set to model  
the presence of  
subpopulations within  
an overall population;  
they are represented as 
weighted sums of Gaussian 
component densities.

Support vector machine
(SVM). Supervised learning 
models that recognize patterns 
in data sets and that are used 
for classification and regression 
analyses.

of an embryo or tissue, as well as in the ability to extract 
a large number of quantitative features from segmented 
cells and subcellular objects72,73 (FIG. 2). This approach is 
also referred to as ‘computer vision’. Although imaging 
lags behind flow cytometry in the number of molecular 
readouts that can be simultaneously measured in single 
cells, novel approaches74–76 indicate that imaging may 
soon be able to achieve a similar or greater extent of 
molecular multiplexing in single cells with an unprec-
edented subcellular resolution (BOX 2). These techno-
logical advances in imaging can create vast amounts of 
data from which, besides quantifying the abundance  
of molecules or their activated (for example, phospho-
rylated) forms in single cells, much additional informa-
tion can be obtained on the subcellular localization and 
patterning of the molecular signals77,78. Imaging can also 
provide information on the morphology and shape of 
single cells12,15 and, importantly, on the relative location 
of a single cell with respect to other cells in a popula-
tion, as well as on its microenvironment, such as bordering 
space without cells, the number of neighbours and local 
crowding79 (FIG. 2). For the purpose of this Review, we 
further focus on image-based screens because this is the 
only technique that allows the analysis of the full spec-
trum of cell-to-cell variability and that has the highest 
spatial resolution (FIG. 1b).

Managing multivariate single-cell readouts. A crucial 
first step in arriving at high-quality multivariate single-
cell information is eliminating technical artefacts. In 
imaging, this can be readily performed using approaches 
from artificial intelligence, such as machine learning80,81. 
Cell segmentation results can be evaluated using software 
tools that project segmentation outlines on the cells in 
images and, guided by this, classifiers can be trained to 
identify incorrectly segmented cells, out-of-focus cells, 
cells on image edges, cells with staining artefacts or, if 
necessary, typical cellular states that produce outlier 
values, such as mitotic and apoptotic cells80,81. It is not 
uncommon that this process removes up to one-third of 
all initially identified cells in a large-scale genetic pertur-
bation screen16. This exclusion step is important because 
many statistical approaches using single-cell data, such 
as principal component analysis (PCA) or Gaussian  
mixture models (GMMs), are sensitive to outlier values 
produced by such artefacts.

The second step to consider is the dimensionality of 
the single-cell measurements (also known as features) 
(see Supplementary information S1 (table)). Many 
features correlate to such an extent that they basically 
hold identical information. Therefore, a step of data 
dimensionality reduction or feature elimination can 
often be applied to reduce the data complexity with-
out losing information. Both linear methods (such as 
PCA) and nonlinear methods (such as t-distributed 
stochastic neighbour embedding (t-SNE)82,83) transform 
the multi dimensional feature space into a space repre-
sented by fewer dimensions, which may allow an easier 
computational handling of the data84,85. As transformed 
dimensions can be difficult to interpret, an alternative 
approach is to perform iterative feature elimination 

without transforming the original feature space85. This 
approach can reveal features that introduce unwanted 
noise and thus weaken the computational identification 
of single-cell phenotypes, as well as uncover features that 
carry most of the information and thus strengthen such 
classifications85.

Finally, it is often desired to perform classification of 
single-cell phenotypes, such as changes in cellular mor-
phology12,15, perturbations in cellular activities4,11,16,43 
or differences in patterns of intracellular organelles27,46. 
Typically, either unsupervised machine learning 
approaches (such as k-means clustering) or supervised 
machine learning approaches (such as support vector 
machine (SVM)) are used85 (see Supplementary informa-
tion S1 (table)). Supervised classification can be done 
by browsing through the images and recognizing, by 
eye, representative cells of different phenotypic classes, 
which are then used to train a machine learning classi-
fier; alternatively, it can be done by using perturbations 
that result in a known single-cell phenotype and classify-
ing all cells in the data set according to a set of known 
perturbations4,12,15,46,86. Although this usually results in 
great interpretability of the data, it has limitations. First, 
it assumes that each cell must belong to a predefined 
set of discrete classes and not part of a pheno typic con-
tinuum, which is particularly problematic for single cells 
that are on the boundary of two or more classes. Second, 
supervised approaches are not comprehensive because 
they overlook single-cell phenotypes that are not a priori 
known or expected. To address this issue, one can use 
unsupervised approaches that classify all single cells in a 
data set in an unbiased manner, such as single-cell clus-
tering or GMM87–91. The challenge with these unsuper-
vised approaches is that the single-cell clusters may not 
always be biologically interpretable and are less robust 
to ‘noisy’ features.

Both supervised and unsupervised classification 
approaches assume that the single-cell phenotypic 
space can be discretized. There is a natural inclination 
to discretize data because it greatly aids interpretability. 
Well-known concepts in genetics such as canalization 
suggest that discrete phenotypes may emerge, and bista-
ble or multistable properties of some biological systems 
also support a discretized view15,92. However, discreti-
zation of high-quality single-cell data can also lead to 
a great loss of information and should, in our opinion, 
be used with care. Some properties of single cells may 
seem to be discrete in certain measurements, for exam-
ple, being in the G1 or G2 phase of the cell cycle when 
measuring DNA content. However, the cell cycle repre-
sents a cycling pheno typic continuum in which certain 
transitions occur faster than others, and the cell-to-cell 
variability within each phase can be used as a proxy for 
the time spent in that phase93. Moreover, many single-
cell measurements do not show discrete peaks within 
a distribution, such as single-cell endocytic activity16. 
By considering single cells on a phenotypic continuum, 
one opens up to the concept of valuing the whole spec-
trum of cell-to-cell variability as biologically meaning-
ful. This concept is important when interpreting genetic  
perturbation effects (see below).
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• Feature
   reduction
• PCA
• Common factor
• Linear models
• Nonlinear
   models
• Kullback–Leibler
   divergence
• Kolmogorov–
   Smirnov test
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Figure 2 | Single-cell measurements and phenotypic scoring.  
a  | The different types of measurements (features) that can be 
extracted from single cells and cell populations in images are 
illustrated. b | Possible dimensionality in multivariate data sets (left 
panel) is shown. Supervised and unsupervised methods can be used for 

dimensionality reduction and for scoring single-cell phenotypes and 
gene perturbations (right panel). Kullback–Leibler information 
divergence is a non-symmetrical measure that calculates the difference 
between two probability distributions. PCA, principal component 
analysis.
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Kolmogorov–Smirnov test
A statistical non‑parametric 
test for the comparison of 
continuous, one‑dimensional 
probability distributions.

Population context
A collective term for the 
context in which a single cell 
displays its activities and 
behaviours, which can be 
determined by both local  
and global effects from the 
population to which the cell 
belongs. The context is 
determined not only by the 
microenvironment of a single 
cell but also by its physiological 
state that is a consequence of 
population effects, such as the 
cell size.

The cell population context. Genetically identical cells 
from the same population cultured in the same medium 
can display a large spectrum of differences in pheno-
types and activity94–97 (FIG. 3a). In fact, the variability in 
single-cell properties within the same cell population 
can be larger than the difference of the mean of these 
activities between an unperturbed and a perturbed cell 
population98. Therefore, in pioneering work, the classical 
Kolmogorov –Smirnov test was used to compare single-cell 
feature distributions11 (see Supplementary informa-
tion S1 (table)). By performing such tests on multiple 
single-cell features separately for multiple-compound 
treatments across a range of different concentrations, 
this improved the ability to characterize drug responses 
and to assign mechanisms to uncharacterized drugs11.

Although comparing full distributions instead of 
mean values offers a powerful approach, its greatest limi-
tation is that it is not possible to determine which single 
cells are compared with each other. Cell-to-cell variability  
of different activities is determined by the physiologi-
cal and morphological state of a cell (that is, the cellular 
state), which can be influenced by the microenvironment 
in a non-trivial manner16,79,99–105 (FIG. 3a). As two single 
cells that are in different microenvironments and cellular 
states can both contribute to defining the same point in 
a one-dimensional distribution, perturbations that act in 
cells with different microenvironments or cellular states 
can have a similar effect on this distribution. We illustrate 
this for three theoretical single-cell features: the amount 
of an organelle such as the lysosome, the amount of a 
protein such as epithelial growth factor receptor (EGFR) 
and the amount of the lipid GM1 at the plasma mem-
brane (FIG. 3a). In each scenario, we show what happens 
during perturbations if these features are either higher 

in cells that grow at high local crowding, or higher in 
big and spread-out cells that usually grow in regions of 
low local crowding. Comparing only one-dimensional 
single-cell distributions of activities would not distin-
guish between perturbations that alter the local crowd-
ing of cells or between perturbations that directly affect 
the specific single-cell features independently of possible 
effects on the cellular microenvironment16 (FIG. 3b). To 
take this into account, one should compare multivariate 
single-cell distributions that incorporate features of the 
cellular state and the cellular microenvironment13–16. This 
allows one to distinguish a situation in which a single-cell 
activity distribution changed because the fraction of cells 
in certain microenvironments changed (that is, indirect 
perturbation) from a situation in which the single-cell 
activity was directly perturbed (that is, direct perturba-
tion) (FIG. 3b). Taking patterns of cell-to-cell variability 
into account has been shown to be important for the 
interpretation of genetic perturbations of virus infection, 
endocytosis, membrane lipid composition and cell adhe-
sion signalling14,16,79. Furthermore, it is likely to be impor-
tant for studying other signal transduction pathways94,97 
and thus for studying gene transcription, protein trans-
lation, metabolic activity and possibly also intrinsically  
cycling cellular states such as the cell cycle106.

In large-scale genetic perturbation screens, many 
perturbations can have effects on one or more aspects 
of the cell population context14,16. These effects cannot be 
predicted from only knowing the number of cells in a 
population because of the nonlinear emergence of the 
spectrum of single-cell microenvironments and states 
in a growing population of cells (BOX 1). Furthermore, 
some perturbations might affect different properties of 
the single-cell microenvironment and cellular state with-
out affecting the number of cells, for example, by altering 
cell migration14,16 (BOX 1). This possibility poses a seri-
ous problem for the comparison of genetic perturbation 
effects and cannot be addressed with a correction for 
trends in the single-cell readout as a function of cell num-
ber alone. Recently, computational approaches have been 
developed that allow a more direct comparison of genetic 
perturbation effects, provided that enough single cells are 
quantified for each perturbation in a large-scale genetic 
perturbation screen to permit statistical modelling14,16.

Finally, cellular heterogeneity and the fact that 
genetic perturbations might affect different subsets of 
cells within one population could have important con-
sequences for interpreting synthetic (that is, epistatic) 
effects between two perturbations. The complexity of 
this becomes very large if one takes into account that 
one perturbation may indirectly alter population con-
text properties of single cells, which may allow another 
perturbation to exert an effect. However, such synthetic 
effects require a fundamentally different interpretation 
compared with current practice, which usually assumes 
that the targeted proteins are part of the same molecular 
complex or pathway acting in the same single cells. This 
population context effect may provide an explanation 
for some of the problematic complexity encountered in 
the analysis of multidimensional synthetic RNAi screens 
in human cells64.

Box 2 | Multiplexing molecular readouts in imaging

In recent years, different approaches have been developed that allow the multiplexing 
of molecular readouts in single cells in imaging74–76,152–154. One approach is based on 
combinatorial labelling and spectral unmixing. This was applied in fluorescence in situ 
hybridization (FISH) on a complex population of multiple bacterial species, using 
simultaneous staining with 28 FISH probes that uniquely identified each species in the 
population76. In another approach, also using FISH, spatial barcoding of long probes 
with combinations of different fluorophores was applied, which could be identified 
using super‑resolution microscopy. This approach allowed the multiplexing of 32 
transcript readouts in single yeast cells154. It is conceivable that similar approaches can 
be developed for antibodies. However, it is likely that these methods of multiplexing 
will run into difficulties when the signals of multiple probes or antibodies overlap 
within the same single cells. These problems do not arise with an alternative principle 
for multiplexing, which relies on iterative staining and removal. In one approach, the 
fluorescence signal of one stain is photobleached, after which a second stain can be 
applied74. However, this becomes impractical when large numbers of single cells are 
imaged. Other approaches rely on antibody elution, in which both primary and 
secondary antibodies are removed by the use of detergent and low pH75,155, or on the 
cleavage of oligonucleotides attached to antibodies152. Thus, it seems likely that, in  
the near future, these developments will allow multiplexing of up to 100 molecular 
readouts from thousands of single cells in an image‑based approach. The information 
on the molecular state of single cells that is gained through this — combined with the 
power of quantifying numerous morphological, spatial and patterning features, both 
within single cells and across single cells — will empower multiple systems‑biology 
approaches that no other method currently achieves. This would bridge the gap 
between omics and single‑cell imaging.
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Figure 3 | Accounting for population context in the interpretation 
of genetic perturbation screens. a | Three theoretical single-cell 
features are shown: the amount of an organelle such as the lysosome, 
the amount of epithelial growth factor receptor (EGFR) at the  
plasma membrane and the amount of the lipid GM1 at the plasma 
membrane. Colour-coding on nuclear segmentation shows different 
and non-trivial patterns of cell-to-cell variability in a cell population. 
Three-dimensional (3D) surface plots below the images show predictors 

of the cell-to-cell variability patterns of the three cellular activities.  
b  | Genetic perturbations can affect the population context of 
individual cells (for example, the crowdedness of cells in a population) 
and can directly or indirectly alter cellular activities. c | The different 
ways by which a genetic perturbation can affect single-cell activities 
are depicted. These can be mediated through indirect effects (via 
changes in population context) or through direct effects on the 
intracellular activity.
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Parallel phenotypic screens
Screens performed in parallel 
in the same cell line using  
the same perturbations but 
different phenotypic readouts.

Accounting for the cell population context. The multi-
variate single-cell feature space of microenvironment 
and cellular state can often be used to predict single-cell 
activities in a non-parametric way14,16,79. For example, the 
amount of intracellular organelles of a single cell can be 
accurately predicted by the local crowding of the sin-
gle cell14,16. Such predictive models can be learned from 
quantifying the cellular activity of interest in a large 
number of unperturbed cells plated over a wide range 
of cell numbers in a multiwell plate, and by creating 
quantile bins of cells within the multi dimensional space 
describing microenvironment and cellular state14,16. 
For each perturbed cell population, such models pre-
dict what the expected single-cell activities, given their 
specific microenvironment and cellular state, are. This 
expected value is then subtracted from the measured 
single-cell activities. By correcting for this effect, it 
becomes possible to directly compare between two cell 
populations from the same cell line (and also, to a certain 
extent, from a different cell line), even if these cell popu-
lations show different distributions of single-cell micro-
environments and cellular states (FIG. 3b). These effects 
have a large impact on the interpretation of results from 
a large-scale genetic perturbation screen14,16. Eliminating 
the effects that act through population context phenom-
ena while maintaining single-cell autonomous effects 
leads to a greater enrichment of genes encoding direct 
regulatory and core machinery components of the cellu-
lar activity that is screened for14,16. In our three examples 
of cellular activity above (FIG. 3a), which show different 
patterns of cell-to-cell variability, indirect perturbation 
effects determined by population context could act in 
opposite directions on these readouts and could mask 
direct effects16. Without correction, these types of effects 
would dominate the interpretation of results, hiding 
core machinery that is potentially shared. Importantly, 
both types of effects are informative, and statistical 
approaches to separate them are merely a means to 
obtain more insights. Furthermore, such separations 
have their limitations, particularly when there is exten-
sive and rapid feedback. However, as long as the direct 
and indirect effects caused by the same genetic pertur-
bation show an additive effect and a large part of the 
spectrum of cellular microenvironments is present in 
the perturbed population, statistical approaches should 
be able to separate them. Finally, population context 
effects also occur in cell colonies of bacteria and yeast 
grown on agar, suggesting that such analysis may also 
be relevant for genetic perturbation screens in single-cell 
organisms107–111.

Inferring functional interactions
To many researchers, the goal of large-scale genetic 
perturbation screens is to identify groups of function-
ally related genes and gene interactions. However, 
unbiased data-driven modelling on quantitative multi-
variate measurements from thousands of single cells 
at a large scale now allows many types of interactions 
to be identified from screens, revealing properties of 
the studied cellular activity at multiple levels. This is a 
systems-biology approach and goes beyond the simple 

creation of hit lists to identify gene candidates for further 
independent characterization. We describe below recent 
developments in the identification and interpretation of 
functional interactions between genes from perturbation 
screens. Finally, we discuss a different type of interac-
tion that can be analysed from such screens — namely, 
between systems properties (for example, single-cell  
features) and perturbations.

Functional interactions between genes. The types of 
gene–gene interactions that can be identified from 
genetic perturbation screens are manifold. Here, we refer 
to functional interaction as a global term that incorpo-
rates both physical interactions between two protein 
subunits of the same complex (protein–protein inter-
actions) and classical genetic interactions measured by 
epistasis between their respective loss-of-function effects 
(FIG. 4a). In our terminology, functional interactions 
also include regulatory interactions16 such as kinase– 
substrate interactions and phenotypic interactions, 
which reflect the contribution of two genes to the emer-
gence of a specific phenotype, without any direct physical  
or chemical interaction between the proteins (FIG. 4a).

The inference of functional interactions and, more 
specifically, classical genetic interactions has a long 
history. The current ‘gold standard’ in mapping classi-
cal genetic interactions at a large scale is by means of 
double-gene deletions, as these experimentally reveal 
epistatic effects between two gene perturbations112,113. 
The initial studies, pioneered in yeast, built a functional 
genetic interaction map based on the measured epi-
static effects between two genes. However, it turned out 
that the pairwise correlation between two genes across 
a large set of epistatic effects with other genes is more 
informative for predicting functionally related genes60,114. 
Thus, statistical inference is used to derive an interac-
tion between two genes from the similarity in their 
perturbation effects across a large number of genetic 
backgrounds (which are caused by the second gene 
perturbation). This concept is, in principle, not differ-
ent from inferring functional genetic interactions from 
multiple single-gene perturbation screens performed in 
parallel using either multiple environmental conditions 
or multiple readouts16,115. Therefore, the large amount 
of information that can be extracted from single-gene 
perturbation screens using multivariate readouts of 
thousands of single cells per perturbation could allow 
the inference of genetic interactions of similar predictive 
power as inferred genetic interactions from double-gene 
perturbation screens16. In addition, as genetic interac-
tions are readout-dependent (see below), the interaction 
inferred from parallel phenotypic screens may reveal novel 
biology that cannot be revealed by screens based on  
epistatic effects on colony fitness.

Genetic interactions are readout-dependent and plastic. 
It is important to realize that the readout used in large-
scale genetic perturbation screens determines, to a large 
extent, the functional interactions that one finds and the 
novel biology that one uncovers64,116. Measuring colony 
fitness reveals interactions between genes that severely 

R E V I E W S

NATURE REVIEWS | GENETICS  ADVANCE ONLINE PUBLICATION | 9

© 2014 Macmillan Publishers Limited. All rights reserved



Figure 4 | Inferring different types of genetic interactions.  
a | Statistical inference of genetic interactions is shown. The schematic 
shows the mode of action of overall correlations (yellow) to infer classical 
genetic interactions versus subset effects in the data (for example, the 
Hierarchical Interaction Score (HIS); blue) to infer regulatory interactions 
between genes. b | Functional annotation enrichments in genes connected 

by the HIS are compared to those in genes connected by overall correlation 
inferred from a large double-gene perturbation screen in 
Saccharomyces cerevisiae61. Part b reprinted from Cell, 157, Liberali, P., 
Snijder, B. & Pelkmans, L., A hierarchical map of regulatory genetic 
interactions in membrane trafficking, 1473–1487, Copyright (2014), with 
permission from Elsevier.
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Nesting
The phenomenon whereby the 
effects of a perturbation are a 
subset of the effects of another 
perturbation.

Hierarchical Interaction 
Score
(HIS). A statistical method that 
infers functional interactions 
between genes if they display 
perturbation effects in a 
consistent subset of readouts, 
or environmental or genetic 
backgrounds. It also infers 
statistical hierarchy, in which 
the perturbation with a 
broader set of effects is placed 
upstream of a perturbation 
with a narrower subset of these 
effects.

affect cell viability when perturbed61, whereas measur-
ing endocytosis will reveal interactions between genes 
that affect those processes when perturbed16. With the 
exception of a few protein complexes that are essential 
for any measurable feature of cells (such as ribosomes 
and proteasomes), these screens will reveal different 
subsets of relevant functional interactions. Furthermore, 
functional genetic interactions are highly plastic and can 
show substantial differences when cells are exposed to 
a single well-defined chemical perturbation117–120. Thus, 
there seems to be no single ground truth for functional 
genetic interaction maps, which reflects the plasticity of 
the underlying molecular networks.

Benchmarking functional genetic interactions. A wide 
variety of different omic approaches are currently being 
applied in numerous laboratories, leading to an explo-
sive growth in information on the molecular networks 
of cells. This progress is being captured by numerous 
databases that contain various types of information 
about functional associations between genes, including 
co-expression from microarrays, protein–protein inter-
actions and manually curated pathways121–123. As a result, 
there is an increasing tendency to compare results from 
a large-scale genetic perturbation screen with such data-
bases, and computational approaches are developed to 
use such databases as a priori information in the analy-
ses of large-scale genetic perturbation screens124,125. For 
example, iterative feature selection can be applied to 
compare the clustering of gene perturbations against 
such databases, selecting or scaling features to improve 
overlap126. However, the danger is that one could bias 
the results of a screen to reveal expected interactions by 
overfitting on the a priori data or by missing strong novel 
interactions arising from the data. Furthermore, these 
databases often generalize information and typically lack 
contextual and dynamic information on interactions, 
and are therefore currently far from being comprehen-
sive enough to be a useful a priori source of information, 
especially when applied to areas of cell biology that do 
not immediately link to classical systematic readouts 
such as colony fitness or cell proliferation. However, we 
consider the various databases of omic information to 
be useful in determining general benchmarks for the  
predictive power of unbiased statistical methods.

Statistical inference of genetic interactions. In recent 
years, various statistical methods have been developed 
and used for the analysis of double-gene perturbation 
screens, and a broad set of modelling approaches have 
been developed and applied to such data127–129. This 
includes, for example, ordinary differential equations 
to model the final fitness measurements as the result of 
a dynamic growth process130. However, the vast major-
ity of studies still rely on original clustering approaches, 
which are based on the pairwise correlations between 
two multivariate readouts of single-gene perturbations 
or epistatic effects. Clustering comes from the field of  
gene expression profiling, in which the clustering 
of genes with similar transcript abundance patterns 
in cells grown in different environmental or genetic 

backgrounds allows the grouping of genes with similar 
function131,132. Currently, clustering approaches using 
perturbation data sets are often combined with orthogo-
nal types of large-scale data sets, For example, in an early 
study functional modules were identified from the com-
bined evidence from the clustering of RNAi perturbation 
effects on early cell division in the C. elegans embryo, 
protein–protein interactions identified using yeast two-
hybrid screens and clusters of mRNA expression pro-
files133. This approach mainly revealed well-known and 
tightly interconnected molecular complexes, such as the 
ribosome, the proteasome, the COPI coatomer, vacuolar 
H+ ATPase and the anaphase-promoting complex133.

The use of overall correlations in clustering is based 
on the assumption that two genes that co-function 
within the same molecular complex, biosynthetic path-
way or regulatory mechanism must show the same per-
turbation effect (or synthetic effect) in many different 
conditions or in many different readouts. Although this 
is certainly true for many of the well-known interactions 
(such as those within the ribosome or proteasome), this 
is not a general rule. Many molecular complexes are 
known to be dynamic and show different composi-
tions depending on the cellular activity in which they 
are involved, or depending on the (micro)environmen-
tal context and intrinsic physiological state of the cells 
in which they are acting. Furthermore, particularly in 
regulatory interactions, an upstream kinase often phos-
phorylates numerous proteins involved in different cel-
lular activities. Therefore, perturbing this kinase might 
result in a broad set of effects across several different 
environmental or genetic backgrounds, multiple sin-
gle cells in a population or multiple different readouts. 
Perturbing a downstream target of this kinase might 
only share these effects for a subset of the conditions or 
readouts and would thus demonstrate an overall poor 
correlation with the kinase113,134. Vice versa, it might be 
that a defined molecular complex is involved in multiple 
activities but is regulated by different upstream kinases 
in each of the activities. In this case, perturbing the 
molecular machinery would have a broader set of effects 
than perturbing one of the kinases. Moreover, a core set 
of molecular machinery components may use different 
subunits depending on the activity that the molecular 
machinery is involved in. Such combinatorial use of 
genes in cellular activities displays itself in large-scale 
genetic perturbation screens in a phenomenon called 
nesting, in which the effects of one perturbation are a 
subset within the effects of an upstream perturbation135 
(FIG. 4b). Several methods have been developed to ana-
lyse such subset or nested effects136,137, but only recently 
have they been advanced to be applicable to large-scale 
genetic perturbation screens16,138. To capture these sub-
set effects, the Hierarchical Interaction Score (HIS)138 was 
developed, which connects two perturbations if they 
share a significant perturbation phenotype in at least 
one of a set of multivariate readouts (FIG. 4b). Moreover, 
the HIS includes directionality in the connection if one 
gene perturbation has a larger set of phenotypes than 
the other gene perturbation (with the upstream one hav-
ing a larger set of phenotypes). When applied to a set of 
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13 parallel RNAi screens measuring various aspects of 
endocytosis16, this allowed the inference of regulatory 
genetic interactions between genes involved in signal 
transduction and membrane trafficking, and uncov-
ered novel regulatory connections within the endosomal 
membrane system in human cells.

Interestingly, a comparison of functional genetic 
interactions inferred by the HIS and by Pearson correla-
tion on the largest available collection of double-gene 
perturbations performed in yeast (Saccharomyces cerevi-
siae)58 revealed that both methods infer complementary 
sets of functional interactions16,61. The HIS infers more 
interactions between genes that are enriched in vesicle 
transport, the endoplasmic reticulum and the Golgi, ATP 
binding (mainly kinases), DNA repair, aromatic amino 
acid biosynthesis, purine metabolism, ribonucleoprotein 
complexes and RNA splicing. By contrast, correlations 
mainly link genes that are enriched in transcription, 
histone modification, cell wall biosynthesis, peroxisome 
biogenesis, spindle localization and RNA degradation16 
(FIG. 4b). Apparently, some cellular processes rely more on 
combinatorial or hierarchical genetic interactions than 
others. As previous efforts in functional genetic interac-
tion mapping have overlooked hierarchical interactions, 
the HIS provides an important additional approach to 
study the functional genetic landscape of cells.

Interactions between systems properties and perturba-
tions. Besides functional interactions between genes, 
large-scale perturbation data sets can also be used 
to analyse overall trends in the data or to generalize 
whether certain features are co-perturbed in a multi-
variate feature set. Although machine learning, data 
dimensionality reduction and feature elimination are 
usually considered as data-processing steps, they do in 
fact provide a first overview of exactly such trends. They 
identify the features that correlate with each other across 
a large number of perturbations and show that certain 
combinations of feature values are more enriched in the 
data set than others. In addition, multiple forms of data-
driven modelling — including partial correlation analy-
sis, multivariate regression or Bayesian network learning 
— can be applied to multivariate single-cell measure-
ments to reveal systems properties of a cellular activity 
and its response to genetic perturbations12,14,45,79,88,139. 
When data-driven modelling is applied across a large 
number of perturbations without a single-cell view (for 
example, by single-cell averaging the multiple features), 
this can reveal how certain properties of the cellular sys-
tem under investigation are more often co-perturbed 
than other properties, which might indicate a causal 
chain of events45. Importantly, such systems properties 
can actually be revealed without the need for any per-
turbation by harnessing cell-to-cell variability — when 
enough single cells are quantified, correlations and 
causal interactions between properties can be inferred 
from the variability present within one cell population. 
If this cell-to-cell variability is combined with perturba-
tions, then such correlations and causal interactions can 
become actual readouts in a screen, enabling the identi-
fication of genetic perturbations of systems properties. 

For example, this approach allowed the identification 
of genes perturbing the patterning of virus infection 
in a cell population, without necessarily changing the 
overall level of virus infection14. Without a single-cell 
analysis, this effect would have remained unnoticed. 
Such analyses are likely to become more predominant 
in the future, as they aid the identification of functional 
roles for genes in determining patterns of single-cell 
activities across cell populations, allowing the emer-
gence of collective cellular behaviour, a fundamental  
property of all life forms.

Perspective
The ability to quantify multiple features of single cells 
and to identify multiple subclasses of single-cell pheno-
types within a perturbed population has markedly 
increased the statistical power with which gene pertur-
bations can be clustered13,15,70,140, but there are several 
other implications that the single-cell paradigm might 
have on the inference of functional genetic interactions.

Not only is correcting for population context-
determined effects important in the interpretation of 
single-gene perturbation effects, but it may also aid 
the interpretation of synthetic effects in double-gene 
perturbations64,65. The common practice of correct-
ing for additive effects in synthetic interactions can 
account for the situation where two perturbations 
affect different subpopulation of cells, although it does 
not account for indirect synergies between two per-
turbations through population context-determined 
effects. One perturbation might change the micro-
environment of single cells, which makes these cells 
sensitive to the second perturbation. Although such 
interactions are interesting, they are different from a 
direct functional interaction between two genes that 
are part of, for example, the same signalling pathway 
acting in the same single cell. The single-cell approach 
might also offer some unique advantages for inferring 
genetic interactions that have not yet been explored. If 
we consider all the single cells in a population to repre-
sent (slightly) different phenotypic backgrounds, then 
the comparison of two genetic perturbations across a 
multivariate single-cell space could be just as predic-
tive of a functional interaction as comparisons across 
a double-gene perturbation space without a single-cell 
approach. This will require the quantification of a large 
number of single cells in each perturbed population, as 
well as a method that allows single cells with a similar 
phenotypic background to be identified and compared 
between two perturbed populations. The latter can 
be achieved, as outlined, with features of the single-
cell microenvironment and state, which will become 
even more powerful when combined with molecular  
multiplexing (BOX 2).

More general regulators of a cellular activity often 
have a genetic perturbation effect in all cells of a popu-
lation, whereas other components might only show a 
genetic perturbation effect in a subset of the population; 
in this case, statistical methods that analyse subset effects 
will be useful. Such population-determined subset  
effects may thus be derived from a varying functional 
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