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SUMMARY
Protein kinases are essential for signal transduction and control of most cellular processes, including meta-
bolism, membrane transport, motility, and cell cycle. Despite the critical role of kinases in cells and their
strong association with diseases, good coverage of their interactions is available for only a fraction of the
535 human kinases. Here, we present a comprehensive mass-spectrometry-based analysis of a human ki-
nase interaction network covering more than 300 kinases. The interaction dataset is a high-quality resource
with more than 5,000 previously unreported interactions. We extensively characterized the obtained network
and were able to identify previously described, as well as predict new, kinase functional associations,
including those of the less well-studied kinases PIM3 and protein O-mannose kinase (POMK). Importantly,
the presented interaction map is a valuable resource for assisting biomedical studies. We uncover dozens
of kinase-disease associations spanning from genetic disorders to complex diseases, including cancer.
INTRODUCTION

Reversible phosphorylation of serine, threonine, and tyrosine

residues represents a central molecular mechanism to control

key properties of proteins, including their enzyme activity, half-

life, complex formation, and subcellular localization. Phospho-

sites have been detected in almost all human proteins (Hornbeck

et al., 2015), and protein regulation by kinases is essential for

orchestrating the majority of biological processes in eukaryotes.

In the human genome, the protein kinase lineage tree encom-

passes more than 500 evolutionarily related proteins (Manning

et al., 2002; Wilson et al., 2018) (Table S1). These are organized

in 10 large families andmore than 100 subgroups.While a subset

of the kinases has been extensively characterized (e.g., those

belonging to the CMGC, STE, and RTK families), for many ki-

nases, we still only have a limited understanding of their func-

tional roles.

Kinases are strongly associated not only with cancer develop-

ment but also with Mendelian developmental disorders, meta-

bolic conditions (Lahiry et al., 2010), and different multifactorial

diseases. Together with GPCRs, they represent the main group

of current drug targets (Wang and Gray, 2015a, 2015b; Wu et al.,
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2015). For the understanding of cellular processes kinases

participate in, and consequently for the charting of associated

disease-relevant signaling pathways, it is critical to map kinase

interaction networks (Gstaiger and Aebersold, 2013). However,

at present, good coverage of protein interaction information is

available only for a subset of human kinases. A well-established

method for capturing stable protein interactions is affinity purifi-

cation coupled to mass spectrometry (AP-MS). Through orthog-

onal data integration and statistical analyses, AP-MS-generated

interaction data can be used to identify proteins that are involved

in the same cellular processes, protein complexes, or functional

and/or disease modules. In this context, we refer to a protein

complex as an assembly of proteins that stably interact with

each other as part of a single macromolecular entity and to a

module as interactors of the same bait protein that also share

a functional and/or disease association but that do not need to

be part of a single assembly (Chen et al., 2014).

Here, we performed a systematic AP-MS analysis of interaction

partners of human kinases. Our study has an unprecedented

depth and includesmore than 300 kinase baits representing all ki-

nase families, many of which have not been included in previously

published large-scale AP-MS studies (Hein et al., 2015; Huttlin
. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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etal., 2015, 2017;Varjosaloet al., 2013), aswell asmore than5,000

previously unreported kinase interactions. This allowed us to

extensively characterize kinase regulation of physiological func-

tions and to define the biochemical context for several, as yet

poorly investigated protein kinases. This is exemplified by PIM3

and POMK kinases for which the identified interaction partners

predicted central roles in cytoskeleton regulationand the process-

ing of glycosylated proteins, respectively. For these two kinases,

we also validated interactions identified by AP-MS using orthog-

onal assayswithBioID-MSand reciprocal co-purification. Further,

using high-content imaging experiments, we could demonstrate

thatsomeof thepoorlycharacterizedkinases (NEK9andPKMYT1)

are required for cell shape control, which is consistent with their

preferred binding to proteins with roles in cytoskeletal organiza-

tion. In addition, we found multiple instances where interaction

neighborhoods of individual kinases were significantly enriched

in particular disease terms, including both Mendelian disorders

and multifactorial diseases. These findings are exemplified by

the nephronophthisis module associated with the NEK7 kinase

and proteins linked to schizophrenia around the PAK5 kinase.

Overall, this study represents themost comprehensive systematic

analysis of human kinase interactions to date and demonstrates

that the obtained network data are a highly valuable resource for

assisting functional studies of kinase complexes in health and dis-

ease. Interaction data can be searched via the following website:

https://sec-explorer.shinyapps.io/Kinome_interactions/.

RESULTS

Systematic Analysis of Human Kinase Interaction
Networks: Study Design and Scope
Building on an experimental workflow described previously, we

generated 316 cell lines, each expressing a specific epitope-

tagged kinase family member from a single locus under an

inducible promoter (Glatter et al., 2009) (Figure 1A). Selection

of the proteins used in the study was based on the feasibility to

detect the expressed kinase construct from each generated

cell line by AP-MS, and this excluded most membrane kinases.

To enhance detectability of sub-stoichiometric or weakly inter-

acting proteins, we used relatively large amounts of cellular start-

ing material (>108 cells) and a rapid single-step affinity purifica-

tion protocol (Figure 1A). We used a large set (n = 94) of

negative controls (i.e., cell lines expressing GFP; see STAR

Methods ) to facilitate subsequent data filtering. By comparing

receiver operating characteristic (ROC) curves of several estab-

lished filtering methods, we identified the combination of

weighted D (WD) score (Sowa et al., 2009) (see STAR Methods)

and protein abundance ratio compared to GFP control purifica-

tions as best performing, and we set the cutoff values such that

the number of false-positive interactions was kept below 1%

(see STAR Methods for details and additional data filtering).

Only 6% of the initial interactions passed these filtering criteria

(Figures S1A and S1B), and the filtering strategy also removed

a large number of typical AP-MS contaminant proteins from

the CRAPome database. The kinase baits used here cover 55

to 75% of kinase families members (Figure 1B) with the tyrosine

(Tyr) kinase family being the only exception. Overall, we identi-

fied 7,316 high-confidence interactions involving 2,379 unique
proteins, with prey proteins being evenly distributed across ki-

nase families (Figure 1C; Table S2). Across all kinase families,

we identified between 66% and 93% novel interactions that

were not deposited in public protein-protein interaction (PPI) da-

tabases (Figure 1D). The number of identified interactors varied

significantly across individual kinases, but it was comparable

across kinase families (Figure 1C).

Data Quality and Novelty
The number of protein interactions reported in public databases

for individual kinases varies dramatically (Figure 2A). These dif-

ferences likely represent research bias toward heavily studied ki-

nases and proteins in general (Edwards et al., 2011). To assess

this, we investigated if the number of interaction partners per ki-

nase correlated with the number of studies that involved the

respective kinase. Even though poorly studied kinases (as deter-

mined by the number of citations in PubMed; Table S1) had on

average a significantly lower number of PPIs annotated in the

public databases compared to frequently studied kinases (Fig-

ure 2A), we observed no such differences in the connectivity in

the here-generated systematic AP-MS dataset, supporting the

unbiased character of our study. Of note, 90 of the kinases

used as baits here had 30 or fewer citations (Table S1).

In total, more than 150 baits included in this study have not

been assessed by previous large-scale AP-MS studies (Fig-

ure 2B), and �15% of the interactions have been already re-

ported in the PPI database Biological General Repository for

Interaction Datasets (BioGRID) (Figure 2C, top) (Stark et al.,

2006), a value that is comparable to other AP-MS studies. As a

measure of data robustness, we analyzed the number of inde-

pendent reports supporting the set of already known interac-

tions. We found that the fraction of known interactions reported

by at least two independent publications was greater than 50%

(Figure 2C, bottom). Overall, our repository confirms, as a single

resource, 1,236 PPIs reported in more than 800 publications.

Identification of Known and Putative Novel Protein
Modules and Complexes
Several previous interaction studies have shown that a strong

co-purification or joint detection of proteins across multiple baits

can indicate physical or functional association (Drew et al., 2017;

Knight et al., 2017; Youn et al., 2018). Using this principle, we

applied a hypergeometric test to identify protein pairs co-purify-

ing at significantly high frequency (see STAR Methods). We

found that many of the frequently co-purifying protein pairs

(1,718 protein pairs, i.e., 1% of all pairs, with adjusted p value <

0.01 and with at least five shared kinase baits) were indeed part

of larger protein complexes or functional modules (Table S3).

Pairs identified with a highly stringent cutoff (adjusted p value <

10�10) are shown in Figure 2D. Several of these proteins be-

longed to complexes with well-annotated roles in the regulation

of kinase stability and activity, such as HSP90-CDC37 and stria-

tin-interacting phosphatase and kinase (STRIPAK) complexes,

respectively. Among others, the analysis highlighted several

groups of co-purifying proteins with distinct roles in carbon

metabolism or rRNA and mRNA processing, as well as proteins

from stable complexes. The latter included mitochondrial com-

plex composed of HADHA and HADHB subunits, the TRiC
Molecular Cell 79, 504–520, August 6, 2020 505
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Figure 1. Systematic Mapping of Kinase Interactions by AP-MS
(A) Workflow used to generate the kinase interaction network. This includes generation of more than 300 cell lines stably expressing doxycycline-inducible ki-

nases, single-step pull-downs, duplicate runs on a hybrid linear ion trap-Orbitrap mass spectrometer, peptide identification with X!Tandem, and statistical

evaluation.

(B) Coverage of kinases across different families. Dark blue represents included and orange not included kinases.

(C) Distribution of the number of identified interactors per kinase.

(D) Novel versus known interactions for each kinase family are plotted against the kinome evolutionary tree. Each kinase family is represented with a different

color, and the same coloring scheme is used in all figures.
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chaperonin complex, and the less well-studied BCLAF1-

THRAP3 protein complex with a role in DNA damage response

(Vohhodina et al., 2017) (Figure 2D). The identified modules of
506 Molecular Cell 79, 504–520, August 6, 2020
co-purifying proteins can also assist protein functional assign-

ments. An example is the less well-studied FTSJ3 protein (Ring-

eard et al., 2019) that is annotated as a putative rRNA
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methyltransferase. We found that FTSJ3 co-purified (p value <

10�5) with several proteins involved in rRNA processing (Fig-

ure 2D; Table S3), which corroborated its suggested function.

The strongest hit in the co-purification analysis was the HSP90

chaperone complex (composed of HSP90A, HSP90B, and

CDC37 proteins). This complex is highly expressed and its

core components are often considered contaminants in AP-

MS studies. However, �60% of all kinases are known to be cli-

ents of the heat shock protein (HSP) complex (Taipale et al.,

2012; Verba et al., 2016). We reasoned that we could use reten-

tion/exclusion patterns of this complex across the baits in this

study to evaluate the specificity of our pull-downs and filtering.

For this, we compared our results with the extensive biochemical

characterization of HSP90-kinase interactions carried out by Tai-

pale and colleagues (Taipale et al., 2012). In their work, they

could distinguish between kinases that are strongly or weakly

associated with HSP90. We found that our data were in very

good agreement with their results; the majority of the kinases

previously classified as strong interactors of the HSP90 complex

members were present in our pull-downs. In contrast, this was

the case only for a smaller percentage of the weak interactors

and a minor fraction of the noninteractors (Figure 2E; Table

S4). These results thus support the filtering strategy em-

ployed here.

Next, we benchmarked the kinase interaction network against

the manually annotated core protein complexes deposited in the

comprehensive resource of mammalian protein complexes (CO-

RUM) database (core complexes, release 02.02.2017) and in this

way assessed the integrity of kinase-containing complexes.

Overall in our set, we could retrieve 50%–100% of the compo-

nents for about 50% of the kinase-containing CORUM com-

plexes, with several instances of kinases bound to their adap-

tors/accessory subunits (e.g., PKA, CK2, and IKK), or within

their stable complexes, such as the EVDP, as illustrated in Fig-

ures 2F and S1C. In a comparison to randomized kinase net-

works (see STAR Methods), the overlap between the CORUM

and our interactions was highly significant (Figure 2G). To further

validate that we are able to capture stable interactions among ki-

nases and associated protein complexes, we compared PPIs

from the kinase interaction network to correlation profiling data

generated from size-exclusion chromatography (SEC) experi-

ments in our laboratory (Heusel et al., 2019). Our analysis indeed
Figure 2. Assessment of the Network Scope and Data Quality

(A) Barplot depicting the number of interactions per kinase found in public datab

(blue bars). A running average of the number of citations per kinase is shown as a re

(B) Venn diagram shows an overlap between kinase baits used in our study and

BioPlex 2 (Huttlin et al., 2017).

(C) Fraction of all protein interactions detected in different AP-MS studies that we

The number of citations associated with the recapitulated interactions is also sh

(D) Protein pairs that were almost exclusively purified together with different kina

(E) Stacked barplots show the fraction of the HSP90 chaperone complex memb

strong or weak clients or were not identified as HSP90 clients (Taipale et al., 201

(F) Representative kinase-containing CORUM complexes that were recapitulated

more than 75% of complex subunits covered.

(G) Contacts between CORUM protein pairs in the kinase network are enriched

pology.

(H) Distribution of co-elution correlation values for all protein pairs measured in HE

for protein pairs found in the same CORUM complex (dark blue area) or here in the

508 Molecular Cell 79, 504–520, August 6, 2020
showed that the here-identified interaction pairs had significantly

higher SEC co-eluting values than randomprotein pairs (i.e., they

were often found physically associated in an independent assay)

(Figure 2H).

Together, these results support the organization of the kinase

interaction network in well-defined functional units and addition-

ally show that co-purification patterns can be effectively used to

suggest new functional associations.

Functional Landscape of the Human Kinase Interaction
Network
To explore the functional space occupied by different kinases,

we first analyzed Gene Ontology (GO) terms associated with ki-

nases and their interaction partners. GO analysis at the kinase

family level lacked specificity, so we focused on the analysis of

GO term enrichment among the interactors of evolutionarily

more strongly related kinase subgroups. The thus-identified sig-

nificant GO terms defined subgroup-specific functional finger-

prints and indicated that processes could be broadly partitioned

in those controlled by several different kinase subfamilies (such

as cell cycle, protein transport, and apoptosis) and those primar-

ily regulated by a single or low number of kinase subfamilies

(such as a mRNA splicing, circadian rhythm, and specialized

signaling pathways; Figures 3A and S2A). To determine to

what extent our data recapitulated already established func-

tional knowledge and revealed novel functional associations,

we used a semantic similarity score (Yu et al., 2010). Using this

score, which measures similarity between groups of GO terms,

we compared the most significant GO terms obtained in this

analysis with the GO terms of the known interaction partners of

the same kinase (obtained from the public repository Integrated

Interaction Database [IID]; see STAR Methods). For several ki-

nase subfamilies (e.g., casein kinase I, mitogen-activated protein

kinase [MAPK], IKK, Aurora, Polo, and STE20), we found a strong

functional match between prior knowledge and our results, sug-

gesting that the newly discovered interactions confirm and

expand our knowledge of the kinase activities in previously

defined contexts (Figure 3B).

In addition, our GO analysis suggested a better definition of

the biochemical roles for several less well-studied subfamilies

and specific kinases. This is illustrated by the proteins interact-

ing with PIM3 kinase (Figure 3C). PIM3 is the least-studied
ases (http://dcv.uhnres.utoronto.ca/iid/; gray bars) and in the presented study

d line. Bars are ordered by the decreasing number of interactions based on IID.

baits used in two previous large-scale AP-MS studies: Hein et al. (2015) and

re also reported by additional studies deposited in the BioGRID database (top).

own (bottom).

se baits (p value < 10�10) are shown.

ers found here as interactors of kinases that were previously classified as its

2).

in the generated network. Conditions for this were more than two subunits and

in a comparison to 500 reshuffled networks of the same composition and to-

K293 SEC analysis (Heusel et al., 2019) (gray area). Average correlation values

kinase network (dark green area) were higher than those for other protein pairs.

http://dcv.uhnres.utoronto.ca/iid/;%20gray%20bars


A

C D

E F H

G

B

(legend on next page)

ll
OPEN ACCESSResource

Molecular Cell 79, 504–520, August 6, 2020 509



ll
OPEN ACCESS Resource
member of the PIM subfamily of CAMK kinases. As of January

2020, only four interactions were reported in the IID PPI data-

base (Kotlyar et al., 2016) and only one in BioGRID (Stark

et al., 2006). The PIM family has been implicated in the progres-

sion of several malignancies, possibly through regulating cell

motility. PIM3 itself was linked to a decreased survival in pros-

tate cancer patients (Santio and Koskinen, 2017). In line with

these observations, the PIM3 interactors identified in this study

included five different proto-oncogenic SRC kinases (FYN,

LYN, SRC, YES1, and FRK) as well as subunits of heterotri-

meric G proteins. In addition, our study revealed a strong asso-

ciation of PIM3 with cytoskeletal proteins, in particular several

actin-regulating modules, with an interaction pattern compara-

ble to that observed for the cytoskeletal kinase DAPK1. To

confirm the PIM3 association with cytoskeletal proteins, we

tagged separately N- and C- terminus of PIM3 with the biotin

ligase Flag-BirA* and carried out a proximity labeling experi-

ment, BioID coupled to MS, in an orthogonal cell line, HeLa

CC2, using a doxycycline-inducible system. We found that

cytoskeleton-related GO terms were also overrepresented in

the thus-defined PIM3 proximal proteome (Figure S2B). While

the overlap between AP-MS and BioID-MS was relatively low

(as expected from the different chemistries and lysis conditions

the two methods use and in accordance with previous reports;

Lambert et al., 2015), the large majority of the proteins found by

both AP-MS and BioID-MS were indeed cytoskeletal, thus

independently confirming the initial finding (Figure S2C). By

this means, our data also suggest possible routes for the

PIM3 control of cell shape and motility.

Besides PIM3, we found that several other poorly studied ki-

nases (with less than 50 citations) preferentially associated with

proteins linked to cell shape related GO terms (Table S5). To

test whether these kinases are indeed functionally linked to cell

shape control, we subjected them to small interfering RNA

(siRNA)-mediated knockdown and subsequent high-content im-

age-based profiling of cell shape phenotypes in two cell lines

(LN229 and SKOV3). Our results revealed that several of the

tested kinases (in particular NEK9 and PKMYT1/MYT1) were

indeed necessary for controlling cell shape (Figures 3D, S2D,

and S2E). Both genes, as well as several other kinases with

positive phenotypes, are known to play a role in cell-cycle regula-

tion. Therefore, additional experiments are needed to determine

whether the identified cell shape changes in the kinase-knock-

down cells result from a direct involvement of these kinases in

controlling cell shape or indirectly via affecting cell-cycle control.
Figure 3. Functional Landscape of the Kinase Interaction Network
(A) Dotplot of the most significant terms associated with kinase subgroups cove

(B) Semantic similarity between the top GO terms based on the interactions from

(C) Main associations in the PIM3 interaction network include the actin cytoskele

(D) Cellular phenotyping after gene silencing. Volcano plot depicts siRNA gene ta

shape phenotypes relative to the negative siRNA control. Targets that had a�log1

different features measured, as defined by the CellProfiler software tool. Differen

siRNAs are denoted by the symbol ‘‘|’’. Heatmaps summarize the information on

nificant.

(E) Circos plot of all kinase-kinase interactions. Coloring scheme is the same as

(F) Ratio between intra-family and inter-family connections.

(G) Number of kinases versus total number of interactors per kinase bait.

(H) WNK3 kinase hub with its interactors and known associations with the endoc
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The Kinase-Kinase Interaction Network
Consistent with the notion that kinases preferentially bind other

kinases (Breitkreutz et al., 2010; Colinge et al., 2014), we found

that ‘‘kinase’’ was the most significantly enriched domain among

the proteins associated with the tested baits. This corresponds

to 454 kinase-kinase contacts (i.e., 5% of all observed interac-

tions) (Figure S2F; see STAR Methods). Overall, more than 250

of these kinase-kinase interactions were not reported previously.

To better understand the architecture of these associations, we

represented all kinase-kinase contacts as a circos plot (Fig-

ure 3E). This highlighted a strong interconnectivity among ki-

nases that belong to the same families. The highest degree of

intra-family connectivity was among kinases from small kinase

families, such as CK1 and NEK, and among kinases from the

larger STE family (Figure 3F). At the other end of the spectrum,

the highest frequency of inter-family connections was observed

for the tyrosine like-kinases (TKLs) and for kinases not assigned

to any of the families and therefore classified as ‘‘other.’’ Of note,

the number of kinase-kinase interactions did not correlate with

the total number of interactions per kinase (Figure 3G).

This analysis also highlighted several new kinase hubs

(defined here are kinases that interacted with three or more other

kinases). An example for this is theWNK3 kinase (Figure 3H). The

WNK3 interactors included its two homologs, WNK2 andWNK1,

as well as four other kinases, STK39, PIK3, GAK, and BIKE.

WNKs have been previously shown to regulate the surface

expression of ion transporters by a variety of means, including

endocytosis (WNK1/4) and activation of STK39. Besides the

known interaction with STK39 (McCormick and Ellison, 2011),

WNK3 was associated with several components of the endo-

cytic machinery. Interestingly, BIKE, GAK, and PIK3 have also

been previously reported to interact with endocytosis regulators,

and the activation of PIK3 was shown to be required for the

WNK1-mediated regulation of the potassium channel ROMK

endocytosis (Cheng and Huang, 2011), suggesting that, similar

to WNK1, WNK3 may also be involved in the endocytosis of

ion transporters.

Importantly, besides interactions among kinases, hundreds of

new interactions with other proteins involved in cellular regula-

tion, such as phosphatases, E3 ubiquitin ligases, DUB enzymes,

and epigenetic factors, were identified in the study (Figures

S2G–S2J). In particular, a large fraction of the kinase interactions

with epigenetic factors was not previously deposited (Fig-

ure S2H). In summary, our analysis provides the first systematic

insight into the global organization of inter-kinase relationships in
red in this study.

this study and interaction partners deposited in the IID.

tal and G proteins and SRC modules.

rgets that displayed the strongest changes in the representative cell area and

0 (p value) greater than 2.5 are labeled with their gene names. Colors represent

t siRNAs for the same gene are indicated with �1 or �2, and combinations of

how many siRNA and siRNA combinations per gene were observed as sig-

in Figure 1.

ytosis proteins.
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human cells and suggests wide a biochemical context for kinase

regulatory activity in controlling protein phosphorylation, ubiqui-

tylation, and gene expression.

The Kinase Interaction Network as a Valuable Resource
for Mapping Kinase-Substrate Relationships
By now, more than 200,000 phosphoresidues in the human pro-

teome have been cataloged (Hornbeck et al., 2015). However,

for only a small fraction of these are the kinases catalyzing the

phosphorylation event known (Wagih et al., 2016). We therefore

investigated if the interaction dataset generated here could be

used to nominate kinase-substrate assignments. We found

that 75 of the physical interactions in our dataset were previously

reported as kinase-substrate pairs. To determine the signifi-

cance of this observation, we generated a set of 1,000 random

networks that mirrored the kinase interaction network size and

topology and assessed the number of known kinase-substrate

interactions in these networks (see STAR Methods). There, the

mean number of interactions documented as a regulatory event

was 16 (Figure 4A). Hence, the observed 75 kinase-substrate in-

teractions represented a strong enrichment (p value < 10�53) and

indicated that the generated network likely included instances of

kinases bound to their substrates.

Next, we aimed to predict novel kinase-substrate relationships

in our dataset (Figure 4B). For this, we used the NetPhorest tool

(Miller et al., 2008) and considered thus-identified kinase motifs

around the experimentally confirmed phosphoresidues (i.e.,

sites identified in five or more large-scale studies or a single tar-

geted small-scale study; Hornbeck et al., 2015)). We restricted

our analysis to the top three kinase families predicted to be

able to recognize each phosphosite (see STAR Methods). In to-

tal, we found 550 instances where computationally predicted ki-

nase-substrate directional interactions were also supported by a

physical contact in the generated kinase interaction network

(Figure 4C; Table S6). This overlap, which consisted of 534

nondirectional protein interactions (16 interactions corre-

sponded to reciprocal kinase-substrate relationships), repre-

sented a significant enrichment when compared to a set of

1,000 random networks of the same size and topology (mean

of 394, p < 10�16; Figure 4C). Collectively, for the phosphosites

included in the analysis, this increases the fraction of sites with

an upstream kinase assignment from 15% to 26%.

Since AP-MS largely captures stable interactions, we as-

sessed if any of the bait kinases were predicted to regulate

two or more proteins from the same CORUM complex (Ruepp
Figure 4. Kinase Interaction Network Assists Assignments of Regulato

(A) In the generated kinase network, 75 interactions (red arrow) were known kinas

random networks (shown as a histogram on the left).

(B) Criteria for the prediction of novel kinase-substrate relationships.

(C) In total, 534 interactions in the kinase network were predicted as possible k

average number of predicted pairs in random networks (histogram on the left).

(D) Several substrate proteins predicted to be regulated by casein kinase 2 form

depicted with red and gray arrows, respectively. Dashed lines indicate connection

holoenzyme is a tetramer with two CK2b regulatory subunits and CK2a1 and CK

(E) CK2 predicted substrates with more than five CK2 phosphomotifs are shown

were reported as CK2 substrates in previous studies are indicated in dark red.

(F) Kinase-kinase regulatory interactions occur within and across kinase familie

colored in green represent activation loop phosphorylation. Kinase families are c
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et al., 2008). This highlighted the CK2 a2/b2 holoenzyme (Fig-

ure 2F) as a possible regulator of multiple subunits from epige-

netic complexes and the splicing machinery (Figure 4D; see

also Figure S2J). Importantly, several of these proteins were

already known substrates of the CK2 CSNK2A1/CK2a1 kinase.

In addition to this, CK1 kinases were identified as possible regu-

lators of smaller complexes involved in transcriptional elongation

(Figure S3A).

Many of the proteins annotated as known CK2 substrates

contain multiple phosphosites that can be recognized by this

complex (Shi et al., 2009; Wise et al., 1997; Yang et al., 2013).

In line with this, 20 of the proteins that we predicted as

CSNK2A1/CK2a1 and/or CSNK2A2/CK2a2 substrates had six

or more confident phosphosites (defined as above) that mapped

within sequence motifs that can be recognized by CK2 (Fig-

ure 4E). None of these 20 proteins were among the known CK2

substrates deposited in PhosphoSitePlus (Hornbeck et al.,

2015). However, CK2 kinase regulation of several chromatin

modifiers, which we predict here, has actually been reported

by previous individual studies. These instances include HIRIP3

(Assrir et al., 2007), DEK (Kappes et al., 2004), SMARCA4 (Pa-

dilla-Benavides et al., 2017), and TCOF1 (Ciccia et al., 2014;

Wise et al., 1997) proteins. In addition to CK2 substrates, pre-

dicted substrates of CLK2 and CLK3 splicing regulators also

had multiple phosphomotifs, which could be recognized by

these kinases (Figure S3A).

In particular, kinase-kinase phosphorylations are an important

element of regulatory networks and are known to modulate

signal amplification and duration (Breitkreutz et al., 2010; Gar-

rington and Johnson, 1999). Kinase-kinase regulatory interac-

tions reflected to a large extent intra- and inter-family connectiv-

ity observed in the nondirectional interaction network (Figures 3E

and S3B). For instance, members of the SRC and protein kinase

C subfamilies interacted almost exclusively with other members

of the same subfamily. The majority of inter-family regulatory cir-

cuits involved kinase-substrate interactions between CMGC and

CAMK families as well as CMGC and AGC families (Figure S3B).

In addition, CMGC kinase CDK1/CDC2 was predicted to regu-

late kinases that belonged to different kinase families but that

had similar roles in mitosis (NEK4 and PKMYT1/MYT1) or in

MAPK signaling (RAF1, IRAK1, andMAP2K2), as depicted in Fig-

ure 4F. Collectively, these analyses present the kinase interac-

tion network as a resource that, via integration of orthogonal

data, can be used to identify novel regulatory relationships with

an effect on a broad range of cellular functions.
ry Interactions

e-substrate pairs, which corresponds to a significant enrichment compared to

inase-substrate interaction (depicted with red arrow). This is higher than the

stable protein complexes. Known and predicted regulatory interactions are

s between proteins from the same CORUM complex (Ruepp et al., 2010). CK2

2a2 catalytically active subunits.

. Number of predicted phosphomotifs is shown for each protein. Proteins that

s. The full set of predicted regulatory events is shown in Figure S3B. Arrows

olored according to the scheme in Figure 1.
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Kinase Complexes Linked to Genetic Diseases
Next, we investigated if any of the kinase neighborhoods associ-

ated with particular genetic diseases. For this, we compared oc-

currences of specific disease terms associated with the interac-

tors of an individual kinase to the frequency of these terms in the

background human proteome (i.e., among all other proteins not

present in the kinase network). For this, we used gene-disease

annotations from the (1) Online Mendelian Inheritance in Man

(OMIM) database (Hamosh et al., 2005) and (2) DisGeNET data-

base (Piñero et al., 2015). OMIM provides curated and confident

annotations with an emphasis onMendelian diseases, while Dis-

GeNET additionally includes predicted disease associations for

both Mendelian and complex diseases. The overall number of

gene-disease associations in the latter resource is significantly

higher, but nonspecific associations can also prevent true rela-

tionships from being detected as significant. In this analysis,

we excluded cancer-associated (CA) terms, as these are a focus

of a separate analysis described below, and we excluded terms

with a very limited support in DisGeNET (see STAR Methods). In

total, 15 of the studied bait kinases had interaction neighbor-

hoods where at least one OMIM disease term was strongly over-

represented (adjusted p value < 0.05, Fisher’s exact test; Table

S7; see STAR Methods), and 137 kinases had interaction neigh-

borhoods in which at least one of the DisGeNET disease annota-

tions was strongly overrepresented (adjusted p value < 0.05,

Fisher’s exact test; Table S7; see STARMethods). The most sig-

nificant disease modules identified with either of the two re-

sources are shown in Figure 5. In nearly half of these instances,

the bait kinase was also annotated with the highlighted disease

term. The obtained kinase-disease associations cover a broad

range of medical conditions. These, among others, include

congenital disorders, psychiatric conditions, and diseases of

specific organs. Below, we describe in detail some of these

associations.

Among the most strongly enriched instances in the OMIM

analysis was a known module involved in DNA repair centered

on the CDK7 kinase (p value < 8.1 3 10�5). Mutation in any of

these proteins that are part of the well-studied TFIIH transcrip-

tion factor complex (Figure 2F) can lead to the development of

the skin condition xeroderma pigmentosum (Singh et al.,

2015). The same disease module was also recovered in the Dis-

GeNET analysis (p value < 1.2 3 10�6; Table S7) extended with

few additional proteins from the same complex (Figure 5). In

addition, the OMIM analysis highlighted a known cluster of pro-

teins around the SRPK2 kinase annotated with the disease term

retinitis pigmentosa (p value < 0.013), a serious eye disorder

leading to blindness. Further, significant DisGeNET disease

modules also included the AMPK holoenzyme, which is

composed of PRKAG2 and PRKAG3g noncatalytic subunits

and PRKAA1/AMPKa1 and PRKAA2/AMPKa2 catalytic subunits

and is known to be linked to the Wolff-Parkinson-White syn-

drome, a condition related to heart arrhythmia (p value < 3 3

10�6). In addition, the DisGeNET annotations suggested an as-

sociation of the module around the PAK5 kinase with schizo-

phrenia (13 out 20 interactors, p value < 10�4). The kinase itself

lacked this annotation (Figure 5). However, PAK5 was recently

linked to psychosis (Morris et al., 2014), and the kinase is pre-

dominantly expressed in the brain. Furthermore, both ap-
proaches identified several significant disease clusters around

the POMK kinase, which we discuss in more detail below.

The analysis of OMIM Mendelian disease annotations further

reported the enrichment of the ‘‘nephronophthisis’’ term around

the NEK8 kinase. Nephronophthisis is a genetic disorder of kid-

neys that affects children. The two proteins involved in the dis-

ease development (i.e., NEK8 and ANKS6) also interacted with

the NEK7 kinase. NEK7’s physical association with this disease

module is supported by previous experimental work (Hoff et al.,

2013). In addition, we found here that two other NEK kinases

(NEK6 and NEK9), as well as the adaptor protein ANKS3, all in-

teracted with NEK7 and with each other. ANKS3 associates

with ciliary disorders (Shamseldin et al., 2016) that are etiologi-

cally related to nephronophthisis, and both ANKS3 and NEK7

were suggested to be important in development of renal ciliopa-

thies (Viau et al., 2018).

In addition to these proteins, NEK7 also interacted with pro-

teins associated with other Mendelian diseases, and some of

these interactions were not reported previously. This included in-

teractions with the TMPO protein (linked to cardiomyopathy) and

with the PGK1 kinase (with a role in hemolytic anemia and neuro-

logical dysfunction). We performed reciprocal purification of

TMPO and PGK1 proteins in a different cell line (A549) and using

antibodies against NEK7. The experiment validated these inter-

actions at NEK7 endogenous expression levels (Figure S4A).

Overall, disease modules identified here tend to associate with

pathologies of diverse organs, thus further signifying the broad

functional roles of protein kinases. Significant modules warrant

further investigations on the exact mechanisms of action and

the role of the associated kinases in the respective diseases.

POMK Frequently Associates with Membrane Proteins
Involved in Glycan Biosynthesis
Within the interaction network generated in this study, the POMK

kinase stood out as a kinase with a high number of interaction

partners (171 proteins), where themajority (i.e., 92%) of the inter-

actions were as yet not reported in PPI databases. Until recently,

POMK was considered a pseudokinase, and it had a generic

name SGK196 (Yoshida-Moriguchi et al., 2013). The kinase lo-

calizes within the endoplasmic reticulum (ER) membrane (Fig-

ure 6A) and has a role in adding a phosphate to the O-mannose

sugar moieties (Ogawa et al., 2015; Yoshida-Moriguchi et al.,

2013). One of its known substrates is dystroglycan, a receptor

that connects cytoskeleton to the extracellular matrix (Jae

et al., 2013). Using the above-described analysis of Mendelian

disease terms, we found that the interaction partners of POMK

were strongly enriched in proteins involved in muscular dystro-

phy (p value < 0.003) or in the related ‘‘congenital disorder of

glycosylation’’ (p value < 0.001). Diseases phenotypes of the

same class were also linked to the loss-of-function mutations

in POMK, which prevent phosphorylation of mannose on dystro-

glycan (von Renesse et al., 2014). Importantly, in the here-iden-

tified POMK disease module, only the interaction with the

POMGNT1 protein was previously cataloged in PPI databases

(Figure 5).

We further characterized POMK interaction partners using GO

functional and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway annotations in the DAVID database (Dennis
Molecular Cell 79, 504–520, August 6, 2020 513
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et al., 2003). This showed that POMK interaction partners were

strongly enriched inmembrane proteins, and in proteins involved

in metabolic pathways (p value < 3.63 10�31 and p value < 3.53

10�12, respectively; Figures 6B and 6C). This agrees with the re-

ports that many proteins associated with the same congenital

disorder phenotypes as POMK tend to function in the glycan

biosynthesis pathway and are often categorized as membrane

and metabolic proteins (Freeze et al., 2014; Yoshida-Moriguchi

et al., 2013; Zhang et al., 2018). Of note, several of the here-iden-

tified POMK interaction partners (i.e., DDOST, STT3A, STT3B,

RPN1/OST1, and RPN2 proteins) are subunits of the core N-oli-
514 Molecular Cell 79, 504–520, August 6, 2020
gosaccharyltransferase complex (OST), which is located in the

ER membrane. Even though O-linked glycosylation predomi-

nantly occurs in the Golgi, O-mannosylation is initiated in the

ER, and the Pmt1-Pmt2 protein complex, which mediates

mannose transfer, is in a physical proximity of the OST complex

(Bai et al., 2019). To further validate these results, we tested

POMK interactions with several of these proteins by reciprocal

co-purifications in another cell line (A549) and used POMGNT1

as a positive control. The data confirmed interactions with

STT3A, RPN1, and RPN2 proteins and thus supported POMK’s

association with proteins involved in N-glycosylation
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Figure 6. POMK Kinase Frequently Interacts with Proteins Involved in Glycan Metabolism

(A) Protein sequence of the POMK kinase is depicted. The kinase is embedded in the ER membrane with the largest fraction of the protein residing within the

ER lumen.

(B) Functional GO terms and KEGG pathway annotations overrepresented in the set of POMK interaction proteins are shown.

(C) Interaction partners of the POMK kinase that according to KEGG annotations are members of metabolic pathways (53 proteins in total) are grouped based on

the KEGG pathway assignments. In the instances where the same protein belonged to several pathways, it was assigned to the larger one.
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(Figure S4B). Overall, the POMK interaction partners we identi-

fied using AP-MS should help in further delineating the exact

roles of this kinase in developmental and metabolic disorders

(Freeze et al., 2014).

Kinase Modules Linked to Cancer
Kinases are the most overrepresented class in the Cancer Gene

Census (CGC), i.e., a set of genes, whose mutations have been

causally implicated in cancer (Fleuren et al., 2016). Using the

generated kinase interaction network, we assessed if CA kinases

indeed interacted more often with other CA proteins. To this end,

we annotated as CA those proteins that are already classified as

cancer drivers (i.e., included in the CGC) or were reported to be

mutated at a significant frequency in cancer patients (Davoli

et al., 2013; Futreal et al., 2004; Lawrence et al., 2014; Vogelstein

et al., 2013). We found that among the interaction partners of CA

kinases, a significantly higher fraction of proteins were them-

selves annotated as CA, both when compared to the interaction

partners of non-CA kinases used as baits here or to human pro-

teins that were not in the kinase network (Figure 7A; p value <

0.005 and p value < 8 3 10�15, respectively, chi-square test).

This observation hence further supports the usage of kinase

physical interactions for the study of their CA roles (Fessenden,

2017).

Next, we searched for individual kinase modules that were en-

riched in CA proteins (see STAR Methods). We identified 33 ki-

nase modules where kinase interacting proteins were signifi-

cantly enriched in CA proteins (adjusted p value < 0.05,

Fisher’s exact test; Figure S5A). In addition to kinases with
well-established cancer driver roles, such as CDK4 and CDK7,

this highlighted several other kinases linked to cellular processes

relevant for cancer development (Figures 7B, S5A, and 7C). For

instance, the PLK1 kinase, an important regulator of mitosis (Pet-

ronczki et al., 2008), which is also frequently overexpressed in

cancer (Liu et al., 2017); JNK1/MAPK8, which is known to regu-

late proliferation and apoptosis (Chen et al., 1996); and Tribbles

pseudokinase 2 (TRIB2/Trb2), which, when overexpressed, is

able to induce acute myelogenous leukemia in mice (Keeshan

et al., 2010). Of note, more than half of protein-protein interac-

tions from the subnetwork depicted in Figure 7C were newly

identified in this study. Jointly, these analyses strongly sup-

ported the notion that better mapping of CA protein modules

could add links to cancer pathways and nominate gene candi-

dates of interest while also providing a cellular context for their

activity.

DYRK2 Kinase Changes Affinity to Its Interactors during
DNA Damage Response
Kinases are known to play a central role in the regulation of DNA

damage response during cancer development (Arcas

et al.,2014). We therefore annotated proteins with a role in this

process (see STAR Methods for the definition of this list) and

looked for the modules with multiple DNA-damage-associated

proteins. Among the kinases that had five or more interaction

partners linked to DNA damage repair were SRPK kinases,

CK2 kinases, and the DYRK2 kinase (Table S8). DYRK2 is a

less well-studied kinase that can translocate to the nucleus

and phosphorylate p53 upon the DNA damage (Taira et al.,
Molecular Cell 79, 504–520, August 6, 2020 515
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Figure 7. Kinase Network Associated with Cancer

(A) Interactors of CA kinases are often themselves associated with cancer.

(B) Individual kinases whose direct protein interaction neighborhoods were strongly enriched in CA proteins (p value < 0.025) are listed together with their

respective p values.

(C) Interaction network represents kinases from (B) together with their associated proteins that are annotated as CA. Coloring scheme is the same as in (B).

Significant bait kinases are highlighted with bold edges. When several of the interaction partners share the same GO term, this is indicated with the colored

background around the kinase name (most common terms are shown).

(D) Volcano plot indicates the enrichment of Dyrk2 interaction partners identified by BioID-MS compared to the GFP control (BirA-taggedGFP). Proteins enriched

with a log2FC (Dyrk2/GFP)R 1 (adjusted p value% 0.05) were considered as high-confidence interactors (thresholds are indicated with dashed lines). Interactors

identified by both BioID-MS and AP-MS measurements are presented as green dots (11 were detected with a high confidence).

(E) Quantitative changes in the Dyrk2 interactions after the treatment with Adriamycin (ADR) are shown. Only interaction partners identified with both AP-MS and

BioID are shown. Significant changes (log2FC (ADR/ctr) R 1 and adjusted p value % 0.05) are indicated with an asterisk.
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2007). The kinase is known to form a stable E3 ligase complex

with DDB1 (DNA-damage-binding protein 1), UBR5, and VPRBP,

and it was hypothesized that DYRK2’s role in the DNA damage

response is likely to depend on its stable interaction with

DDB1 (Bensimon et al., 2011). Here, with AP-MS, we additionally

identified a new interaction between DYRK2 and BIRC6, a scaf-

fold protein that assists recruitment of DNA damage factors to

DNA breaks (Ge et al., 2015a, 2015b). To validate the AP-MS in-

teractions and additionally assess if DYRK2 interactors change

during the DNA damage response, we performed BioID-MS ex-

periments in HEK293 cells under normal conditions and upon the

treatment with the genotoxic agent Adriamycin (ADR). The Bio-

ID-MS analysis confirmed 11 DYRK2 interactions initially identi-

fied by AP-MS (Figure 7D). Among these were the above

mentioned BIRC6 and proteins from the stable E3 ligase com-

plex (DDB1, UBR5, and VPRBP). However, after ADR treatment,

DYRK2 interactions with both BIRC6 protein and the associated

E3 ligase complex were reduced (Figure 7E), thus suggesting

that DYRK2 is likely to act independently during DNA repair. In

contrast, ADR treatment increased interactions between

DYRK2 and several proteins that can promote phase transition,

such as SRRM2 (Rai et al., 2018). In addition to interaction part-

ners that overlapped with AP-MS, BioID-MS showed that ADR

treatment induced stronger binding of DYRK2 to P53, GTSE1,
516 Molecular Cell 79, 504–520, August 6, 2020
and several other DNA-damage-associated proteins (Figures

S5B–S5D). Overall, the observed quantitative changes among

DYRK2 interaction partners suggest that DYRK2 could have a

role in the DNA damage response that is independent of the

DDB1 protein and the core E3 ligase complex.

DISCUSSION

Here, we present the first comprehensive interaction map for the

human kinome. Understanding the biochemical context of pro-

tein kinase activity is crucial to decode the architecture of cellular

signaling and ultimately interpret disease-associated genomic

variation. Notwithstanding the high level of comprehensiveness

of the interactome mapping performed here, the study has

several known limitations that are inherent to large-scale AP-

MS experiments. The results did not capture many physiologi-

cally relevant interactions, such as for instance cell-line-specific

interactions or interactions that occur only upon specific stimuli.

Similarly, mutated kinases may have distinct interactomes and

some of the interactions crucial for disease development will

not be observed with wild-type isoforms used here. In addition,

AP-MS is likely to miss many transient but physiologically rele-

vant interactions, and the protocol we used here is not tailored

towards large-scale identification of interactions that occur
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among membrane or nuclear proteins. Furthermore, overex-

pressed or misfolded kinases will have a stronger interaction

with Hsp90 and other chaperones, and some of the interactions

could occur only after cell lysis. It is also important to note that 20

of the studied kinases are not endogenously expressed in the

HEK293 cell line used here and 37 other kinases are expressed

only at very low levels (Table S9). Finally, the kinase constructs

used in the study may not reflect the exact isoforms expressed

in human cells (Table S9), and the performed N-terminal tagging

of the constructs could have affected protein stability, localiza-

tion, and binding. These caveats are important to bear in mind

when assigning new roles to kinases based on their interaction

neighborhoods.

Kinases tend to have a relatively high number of interaction

partners and pleiotropic roles in the cell (Huttlin et al., 2017; La-

hiry et al., 2010), so it is not uncommon that the same kinase fam-

ily associates with different disease phenotypes (Lahiry et al.,

2010). For instance, DYRK2 is also involved in the regulation of

proteasome-mediated protein degradation and cell proliferation

through phosphorylation of the Rpt3 19S proteasome subunit

(Guo et al., 2016). Here, we predict a number of novel modules

where interaction partners of the studied kinases share the

same disease associations (Figure 5). Better mapping of such

modules can aid understanding of kinase roles in the cell and

in disease development (Cheng et al., 2014; Csermely et al.,

2013; Goh and Choi, 2012), as we suggest here for NEK7,

PAK5, and other kinases. Furthermore, mutations that drive can-

cer development often affect kinase regulation and their interac-

tion properties (Buljan et al., 2018). Combined with the rich can-

cer genomics data, context information from the kinase

interaction network can be of a high value for identifying ki-

nase-linked cancer drivers and establishing a link to cancer pa-

thologies, which is not readily evident from mutation patterns

alone. Importantly, there are currently more than 50 approved ki-

nase inhibitors and more than 130 in clinical trials (Wilson et al.,

2018). This emphasizes the direct relevance of the mapped dis-

ease and functional modules. Moreover, these interactions shed

a new light on the biology of several under-investigated kinases,

such as POMK and PIM3. Furthermore, the generated interac-

tion network is able to assist kinase-substrate predictions, as

illustrated here by epigenetic complexes that we predict to be

controlled by CK2 holoenzyme (Figure 4D).

Overall, well-defined interaction modules can be a valuable

resource for integrating incomplete functional and disease data

on human genes. In this regard, the kinase interaction network

represents a stepping stone toward a systemic understanding

of kinases biochemical context, function, and regulation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

NEK7 Antibody Abcam ab133514

V5 Antibody Life technologie Europe BV R960-25

Anti-HA Antibody Lucerna Chemie AG HA-11, 901513

secondary anti-rabbit IgG HRP-conjugated

antibody

Cell Signaling #7074S; RRID:AB_2099233

Alexa Fluor� 488 anti-Vimentin Biolegend #677809; RRID:AB_2650955

Alexa Fluor� 647 anti-Tubulin Beta 3 Biolegend #657406; RRID:AB_2563610

DAPI Sigma Aldrich N/A

Chemicals, Peptides, and Recombinant Proteins

Strep-Tactin Sepharose IBA 2-1201-010

X-Treme Gene 9 DNA Transfection Reagent Roche 06365787001

Hygromycin B Invitrogen 10687010

BlasticidinS Hcl, 50 mg Life Technologies R21001

Biotin Sigma B4501-1G

Doxycycline Hyclate Sigma D9891-5G

Critical Commercial Assays

jetPRIME transfection Reagent Chemie Brunschwig AG 114-15

Lipofectamine RNAiMAX Invitrogen 13778075

Adriamycin Sigma D1515

Deposited Data

Processed Protein-Protein Interaction data This paper Table S2

Raw Mass Spectrometry Data and Peptide

Identifications

This paper Peptide Atlas: PASS01469 https://db.

systemsbiology.net/sbeams/cgi/

PeptideAtlas/PASS_View?

identifier=PASS01469.

Experimental Models: Cell Lines

Human: Flp-Ln T-Rex 293 Cell Line Thermo Fisher Scientific (Invitrogen) R78007

Human: A549 Cell Line ATCC ATCC� CCL-185

Human: T-REx-HeLa CCL2 Flp-In cells Thermo Fisher Scientific (Invitrogen) R71407

Human: LN-229 (glioblastoma cell line) ATCC ATCC� CRL-2611

Human: SKOV3 (ovarian cancer cell line) ATCC ATCC� HTB-77

Oligonucleotides

Silencer select GSG2 siRNA ThermoFisher s38320

Silencer select PIM3 siRNA ThermoFisher s53946

Silencer select PIM3 siRNA ThermoFisher s53947

Silencer select PKMYT1 siRNA ThermoFisher s194986

Silencer select PKMYT1 siRNA ThermoFisher s194985

Silencer select CSNK1G1 siRNA ThermoFisher s28823

Silencer select CSNK1G1 siRNA ThermoFisher s28822

Silencer select WNK3 siRNA ThermoFisher s35278

Silencer select WNK3 siRNA ThermoFisher s35279

Silencer select POMK siRNA ThermoFisher s534531

Silencer select POMK siRNA ThermoFisher s534532

Silencer select NEK7 siRNA ThermoFisher s44315

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Silencer select NEK7 siRNA ThermoFisher s44316

Silencer select NEK6 siRNA ThermoFisher s21184

Silencer select NEK6 siRNA ThermoFisher s21185

Silencer select RIOK2 siRNA ThermoFisher s622

Silencer select SCYL3 siRNA ThermoFisher s32780

Silencer select SCYL3 siRNA ThermoFisher s32778

Silencer select NEK9 siRNA ThermoFisher s40772

Silencer select NEK9 siRNA ThermoFisher s40771

siRNA Positive control: Silencer Cy3-

labeled GAPDH siRNA

ThermoFisher Catalog #: AM4649

siRNA Negative control: Silencer Select

Negative Control No. 2 siRNA

ThermoFisher Catalog #: 4390846

Recombinant DNA

hORFeome V5.1 Horizon Discovery/ Dharmacon Open Biosystem

hORFeome V8.1 Horizon Discovery/ Dharmacon The CCSB ORFeome Collection

pTOSH-GW-FRT-HA-Strep Glatter et al., 2009 N/A

pOG44 Flp recombinase expression vector Invitrogen V600520

Kinome Constructs Varjosalo et al., 2008 N/A

Software and Algorithms

Cytoscape 3.6.0 Kohl et al., 2011 https://www.cytoscape.org/

X!Tandem Craig & Beavis, 2004 https://www.thegpm.org/tandem/

Abacus Fermin et al., 2011 http://abacustpp.sourceforge.net/

ProteinProphet Deutsch et al., 2010 Trans Proteomic Pipeline (TPP, v.4.6.0)

R package GOSemSim Yu et al., 2010 Bioconductor (v. 2.6.2)

R package RDAVIDWebService Fresno and Fernández, 2013 Bioconductor

NetPhorest Miller et al., 2008 http://netphorest.info

CellProfiler 2.2.0 McQuin et al., 2018 https://cellprofiler.org

MATLAB R2019a https://www.mathworks.com/

CompPASS Sowa et al., 2009 http://besra.hms.harvard.edu/ipmsmsdbs/

cgi-bin/tutorial.cgi

Other

Calculation of co-purification p values This paper N/A

Opera Phenix automated spinning-disk

confocal microscope at 20x magnification

Perkin Elmer HH14000000

Upon acceptance, we will share all images

generated for the Manuscript through

Mendeley Data

N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to the Lead Contact, Matthias Gstaiger (matthias.

gstaiger@imsb.biol.eth.ch).

Materials Availability
Reagents generated in this study will be made available on request, but we may require a payment and/or a completed Materials

Transfer Agreement if there is potential for commercial application.

Data and Code Availability
Raw data generated during this study is available at: https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?

identifier=PASS01469.
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Kinase network is accessible via the following website: https://sec-explorer.shinyapps.io/Kinome_interactions/.

The code is available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Expression constructs
To generate expression vectors for doxycycline-inducible expression of N-terminal Strep-HA-tagged bait proteins, humanORFs pro-

vided as pDONR223 vectors were selected either fromaGateway� compatible human orfeome collections horfeome v5.1, horfeome

v8.1 and ORFeome Collaboration Clones (OpenBiosystems, Horizon Discovery) or from the collection of kinome constructs (Varjo-

salo et al., 2008) for LR recombination with the destination vector pcDNA5/FRT/TO/SH/GW (Glatter et al., 2009). Information on this is

provided in the Table S9.

Stable cell line generation
HEK Flp-In 293 T-Rex cells (Invitrogen) containing a single genomic FRT site and stably expressing the tet repressor were cultured in

DMEM medium (4.5 g/l glucose, 2 mM L-glutamine, Invitrogen) supplemented with 10% FCS, 50 mg/ml penicillin, 50 mg/ml strepto-

mycin, 100 mg/ml zeocin and 15 mg/ml blasticidin. The medium was exchanged with DMEM medium (10% FCS, 50 mg/ml penicillin,

50 mg/ml streptomycin) before transfection. For cell line generation, Flp-In HEK293 cells were co-transfected with the corresponding

expression plasmids and the pOG44 vector (Invitrogen) for co-expression of the Flp-recombinase using the Fugene6 transfection

reagent (Roche). Two days after transfection, cells were selected in hygromycin-containing medium (100 mg/ml) for 2–3 weeks. Of

note, HEK293 used here are transformed by adenovirus and they express adenoviral oncoproteins E1A/B.

METHOD DETAILS

Protein purification
Following hygromycin selection, stable isogenic HEK293 cell pools were grown in eight 14 cm Nunclon dishes to 80% confluency,

1.3 mg/ml doxycycline (Sigma) was added for 24h to induce the expression of SH-tagged bait proteins and harvested with PBS con-

taining 10 mM EDTA. Cells were collected, frozen in liquid nitrogen and stored at �80�C prior to protein complex purification. Effec-

tively, > 1x108 cells were used per pulldown.

The frozen cell pellets were resuspended in 4 mL HNN lysis buffer (50 mMHEPES pH 7.5, 150 mMNaCl, 50 mM NaF, 0.5% Igepal

CA-630 (Nonidet P-40 Substitute), 200 mM Na3VO4, 1 mM PMSF, 20 mg/ml Avidin and 1x Protease Inhibitor mix (Sigma) and incu-

bated on ice for 10 min. Insoluble material was removed by centrifugation. Cleared lysates were incubated on a rotating wheel at

4�C with 50 ml pre-equilibrated Strep-Tactin Sepharose beads (IBA Biotagnology) for 15min and loaded on a spin column (Bio-

Rad). The beads were washed two times with 1 mL HNN lysis buffer and three times with HNN buffer (50 mM HEPES pH 7.5,

150 mM NaCl, 50 mM NaF). Bound proteins were eluted with 600 ul 0.5 mM Biotin in the HNN buffer. To remove the biotin, eluted

samples were incubated for 1 h in presence of 25% TCA on ice, washed with acetone, air-dried and re-solubilized in 50 ml 8 mMUrea

in 50mMNH4HCO3 pH 8.8. Cysteine bonds were reducedwith 5mMTCEP for 30min at 37�C and alkylated in 10mM iodoacetamide

for 30 min at room temperature in the dark. Samples were diluted with NH4HCO3 to 1.5 M Urea and digested with 1 mg trypsin (Prom-

ega) overnight at 37�C. The peptides were purified using C18 microspin columns (The Nest Group Inc.) according to the protocol of

the manufacturer and eluted with 0.1% formic acid, 3% acetonitrile for mass spectrometry analysis.

Affinity purification and western blotting
For Co-AP and western blotting analysis shown in Figure S4B 5x 105 A549 cells were co-transfected with plasmids for the transient

expression of the V5-tagged kinase and SH-tagged proteins using jetPRIME transfection Reagent (114-15, Chemie Brunschwig AG).

The transfected cells were lysed 24 hr after transfection in 1mL of HNN lysis buffer (50mMHEPES pH 7.5, 150mMNaCl, 50mMNaF,

0.5% Igepal CA-630 (NP-40 substitute), 200 uMNa3VO4, 1mMPMSF, and 1x Protease Inhibitor mix (sigma)). The cleared lysate was

incubatedwith 15 mL equilibrated Streptactin beads (Streptactin superflow 50%, IBA) o/n at 4�Con a rotation shaker. The beadswere

washed three times with the lysis buffer and after final wash the complexes were eluted in 50 mL of 3X Laemmli buffer. The samples

were boiled for 5 min, separated by PAGE and transferred to nitrocellulose membranes (Whatman GmbH, Germany). Immunopre-

cipitated proteins were detected either with anti-HA (HA-11, 901513, Lucerna Chemie AG)) or anti-V5 (R960-25, Life technologie Eu-

rope BV) primary and secondary horseradish peroxidase (HRP)-conjugated secondary antibodies (anti-mouse, labforce) by

enhanced chemiluminescence. For the detection of complexes with endogenous NEK7 kinase (Figure S4A), A549 cells were trans-

fected with vectors expressing SH-tagged proteins, lysed, lysates purified and subjected to western blotting as described above.

Endogenous NEK7 protein was detected by western blotting of the Streptactin purified samples using primary anti NEK7 antibodies

(Abcam, ab133514) and secondary anti-rabbit IgG HRP-conjugated antibody (Cell Signaling, #7074S).

Mass spectrometry
LC-MS/MS analysis was performed on a Thermo Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Peptide separation

was carried out by a Thermo Easy-nLC 1000 HPLC system using a 15 cm long, 75 mmdiameter ID PepMap column (Thermo, particle
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size 2 mm) with a 45min gradient from 5%B to 35%B at a flow rate of 300 nl/min. Solvents were A: 3% acetonitrile, 0.1% formic acid

in water; B: 3%water, 0.1% formic acid in acetonitrile. The data acquisitionmodewas set to obtain one high resolutionMS scan in the

Orbitrap (240,000@400 m/z). The 10 most abundant ions from the first MS scan were fragmented by collision induced fragmentation

(CID) and MS/MS fragment ion spectra were acquired in the linear ion trap at normal scan rate. Charge state screening was enabled

and unassigned or singly charged ions were rejected. Precursor isolation width was 2 m/z in all cases and dynamic exclusion was

enabled for 30 s. After every technical replicate set, a peptide reference sample containing 200 fmol of human [Glu1]-Fibrinopeptide

B (Glufib) (Sigma-Aldrich) was analyzed to monitor the LC-MS/MS systems performance.

Carry-over was systematically controlled through all theMS runs. Each subsequent control (Glufib)measurement and bait replicate

set were manually screened for the presence of previous bait and most abundant interaction candidate peptides. Samples with car-

ried-over interacting proteins were re-measured using cleaned LC columns.

Kinase classification
To classify kinases in families, we used as primary reference the Uniprot annotation (reported either in individual entries or in the sum-

mary file https://www.uniprot.org:443/docs/pkinfam.txt, released July 2016). For kinases that were not classified in Uniprot and for

Atypical kinases, we used the classification from (Manning et al., 2002) (http://kinase.com/web/current/kinbase/). For three kinases

for which the classification was ‘‘other’’ in Uniprot, we followed the more specific classification by Manning and colleagues (Q96S38

and Q9Y6S9 classified as AGC; P49842 classified as Atypical). The following proteins were not considered in the classification but

were kept in the interactome: 1) two putative kinases: Q9UJY1 and Q12792. 2) Non-catalytic subunits of the 50-AMP-activated pro-

tein kinase: Q9UGI9, Q9UGJ0, O43741, P54619. Similarly, subfamily classification was primarily based on Uniprot and integrated

with information reported in Manning et al., 2002. TheManning classification contains up to three classes (Group, Family, Subfamily);

for consistency, we refer to the highest Manning class as ‘‘Family’’ and the first subordinate class as ‘‘Subfamily,’’ even if the first

class is in some instances, e.g., AGC, defined as Group. The classification is reported in Table S1.

Citation analysis
Citation data for kinome baits were downloaded (July 2017) from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz using their

geneIDs. Pubmed ID counts for entries with multiple geneIDs were summed up (kinase P57078 was not considered for analysis, as it

doesn’t have an associated geneID). The number of unique publicly available interactions was derived from the Integrated Interaction

Database (IID; version 2017-04). The full data is reported in Table S1. Red line in Figure 2A that represents a running average of the

citation number was calculated using R package zoo (k = 5).

Reference databases and comparison with HT AP-MS studies
We used as a reference database for published and deposited interactions the integrated interaction database (IID) (Kotlyar et al., 2016)

(version2017-04, unless statedotherwise). BioGridwasused for the calculation of the fraction of the identified interactions that havebeen

already deposited. For protein complexes, we used the list of core CORUM complexes (release: 02.02.2017; http://mips.helmholtz-

muenchen.de/corum/#download) and removed residual duplicates complexes as well as complexes with only a single protein. Baits

from (Hein et al., 2015) were identified from column ‘expected.bait.reference.uniprot.id’ column in the ‘bait cell line’ sheet, supplemental

data. BaitsGeneIDs fromHuttlin et al. (2015) andHuttlin et al. (2017)weremapped toUniprotIDs usingUniprot Retrieve/IDMapping func-

tion (Uniprot,December2018) and reviewedentrieswereused for thecomparison (17 and30unmappedGeneID identifiers, respectively).

GO analysis
As input for the GO analysis, we used the combined (non-redundant) interactome from the kinome/IID (version 2018-05) for all sub-

groups with at least 3 proteins among our baits, including the baits and excluding chaperones. The analysis was carried out using the

R package RDAVIDWebService (Fresno and Fernández, 2013), using as annotation category ‘‘GOTERM_BP_DIRECT’’ and selecting

all the entries with an adjusted (Benjamini-Hochberg) p value < 0.05, or up to the top 5 entries in the instances when less than 5 entries

satisfied the significance threshold. Specific GO terms were manually collapsed into more general ones; first, by clustering terms

together based on semantic similarity and then by choosing shared terms among the inferred trees (AmiGO 2 version 2.5.12) of those

GO terms. When multiple terms for the same subfamily were mapped to the same general term, the lower p value value has been

represented in Figure 3A. To measure semantic similarity between Kinome network and IID interaction networks, we compared

GO terms associated with the Kinome and IID for the indicated subgroups (as defined above). The comparison was carried out

with R packages GOSemSim (v. 2.6.2)(Yu et al., 2010), using the Wang similarity measure.

To classify interactors among phosphatases, ubiquitin ligases, DUB enzymes, transcription factors and epigenetic factors, and to

define protein complexes belonging to the latter class, we relied on curated information included in, or associated with, the following

publications (Li et al., 2008; Medvedeva et al., 2015; Nijman et al., 2005; Sacco et al., 2012; Wingender et al., 2013). To evaluate the

fraction of novel interactions including interactors belonging to these classes, we used as a reference the IID (Kotlyar et al., 2016)

(version 2017-04).

Network visualization
Protein Interaction data was visualized with Cytoscape 3.6.0 (https://www.cytoscape.org/) (Kohl et al., 2011).
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Protein Domains
In order to assess the overrepresentation of functional domains, domain assignments were downloaded from the Pfam database

(Pfam 31.0, March 2017) (Finn et al., 2016). Proteins identified as interaction partners of protein kinases were compared to all other

proteins in the reference human proteome (Uniprot-all table from the Uniprot database obtained in June 2018, containing 20,361 en-

tries in total) (UniProt Consortium, 2015). Only proteins with at least one annotated domain were considered. For each domain, a

fraction of proteins with the domain was compared between the kinase interactors and background proteins. Significantly overrep-

resented domains were identified with one-sided Fisher’s exact test in R and the obtained p values were corrected using the Benja-

mini-Hochberg method.

Prediction of kinase-substrate interactions
In order to predict the phosphosites and the possible upstream kinases, NetPhorest software tool (distribution November 2013)

(Miller et al., 2008) was locally installed and ran on the fasta sequences of all proteins in the kinase interaction network. The output

of this analysis is a position of each Serine, Threonine or Tyrosine that is found within a motif which could be recognized by one or

more kinase groups and a posterior probability for each group. As the predicted phosphosites we kept only residues that were exper-

imentally found to be phosphorylated: either by a small-scale study or by five or more large-scale studies deposited in the Phospho-

sitePlus database (release November 2018). For each individual site, we considered only the top three predicted kinase groups and

required a minimum posterior probability of 0.035, as well as the posterior to be higher than the prior (Freschi et al., 2014; So et al.,

2015; Tan et al., 2009). Individual kinase groupmembers were assigned to each upstream kinase group based on the file provided by

the NetPhorest support team and based on the kinase family or subfamily namematch to the NetPhorest groups. Finally, the kinase-

substrate relationships predicted from the sequence features were considered further only when they were additionally supported by

the physical interaction in the filtered AP-MS interaction data obtained here.

A list of the known kinase-substrate pairs was obtained from the PhosphoSitePlus database (data extracted in Nov 2018), (Horn-

beck et al., 2015). This dataset was overlapped with the Kinase interaction network and the number of interactions that agreed with

the annotated regulatory events was noted. In order to assess if this was higher than expected, random networks were composed.

These preserved the size and topology of the kinase network, i.e., the distribution of the number of interactors per individual kinase,

and interactors were randomly sampled from the pool of all prey proteins identified in the study. This was repeated 1,000 times and

each time the total number of interaction partners that were also known kinase-substrate pairs was noted. Distribution of the values

observed for the random networks was compared to the corresponding value for the original Kinase network using the pnorm test in

R. Reciprocal regulation, i.e., instances where two kinases interacted and both were known to phosphorylate each other, were

counted as a single interaction event. Next, we evaluated the observed number of predicted kinase-substrate regulatory events.

Analogous to the approach used for known substrates, random networks were generated in the same way and the number of pre-

dicted kinase-substrate events in the kinase network was compared to the distribution of these values for random networks with the

pnorm test in R. The subnetwork with kinase-kinase regulatory interactions was obtained by asking that both the kinase and the sub-

strate are listed as kinases according to Manning annotations included in Table S1 (Manning et al., 2002). Additionally, the number of

predicted phosphosites in each substrate protein was counted and proteins withmore than five phosphosites that are predicted to be

regulated by the same kinase were noted. Kinases that had more than five substrate proteins with multiple, i.e., six or more, phos-

phosites, were then investigated in more detail.

Many kinases that belong to the AGC, CAMK, CMGC or Tyrosine Kinase families have conserved sequence segments around the

more variable active loop region (located between the Mg binding and P+1 loops). Phosphosites that map within the active loop are

often associated with specific roles and they can function as regulatory switches for kinase activity. In order to identify active loop

coordinates in the predicted substrate kinases, all bait kinases were aligned using the multiple sequence alignment tool Clustal

Omega (Sievers et al., 2011). For this, we noted positions of activation loops in exemplary well-annotated kinases and used the

sequence alignment to infer positions of these in other kinases. Based on differences in sequence motifs we used as reference ki-

nases CDK9 from CMGC family and BRAF from TLK family. Amino acid (aa) positions before and after the activation loop were noted

in both CDK9 and BRAF kinase. For all other bait kinases it was assessed if the regions before and after the less-conserved activation

loops in CDK9 (first choice) or BRAF shared a sequence similarity with the aligned regions in these proteins (for instance, kinases from

CMGC family had an excellent alignment with CDK9 annotated regions). To consider that there was a sequence conservation in the

regions surrounding the active loop, the predicted active loop sequence segment had to be between 5 and 50 amino acids long and

at least half of the amino acids in sequence segments around the active loop had to be similar and aligned. The length of the sur-

rounding regions was estimated from sequence annotations and alignment with other kinases and it was 9 and 7 amino acids for

CDK9 and 11 and 9 amino acids for BRAF for the segment preceding and after the activation loop, respectively. Finally, when appli-

cable, phosphosites in the predicted substrate proteins were mapped to the active loop coordinates defined in this way. This high-

lighted 25 predicted substrate kinases in which one or more regulated phosphosite was within an active loop (this information is

included in the Table S6).

In addition to phosphosites, sequences of predicted substrates were searched for the presence of docking motifs that could be

recognized by protein kinase domains. For this, annotations in the annotated eukaryotic linear motifs were downloaded from the ELM

database (ELM 2016) (Dinkel et al., 2016).
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Detection of disease-associated kinase modules
To obtain confident annotations for human gene-disease relationships, ‘‘morbidmap’’ table with the curated data on known Mende-

lian disorders was retrieved from the Online Mendelian Inheritance in Man (OMIM) catalog (a dataset generated in January 2017) (Ha-

mosh et al., 2005). OMIM associates diseases to gene names, so all gene names assigned to individual Uniprot identifiers were

searched. Because similar disease phenotypes can have slightly different OMIM terms, each disease term was comma separated,

unspecific character symbols were removed, and only the expression before the first commawas assigned to the associated protein.

Additionally, as a control, all proteins in the kinase network were annotated with individual words occurring in OMIM terms. Six ex-

pressions that were not capturedwith the above approach, but were re-occurring in the kinase network, were separately evaluated as

regular expression terms (these terms were: ‘‘glycogen storage disease,’’ ‘‘mental retardation,’’ ‘‘thalassemia,’’ ‘‘deafness’’ and

‘‘ventricular’’). Cancer-associated terms were skipped as these were analyzed separately. Only terms that were shared among three

or more proteins in the kinase network were considered in the further analyses. Finally, to reduce the unspecific enrichments, actin

and myosin proteins as well as chaperone proteins (defined as having HSP or chaperone in the gene name, or HSP, CPN60 or FKBP

domain in the protein sequence) were excluded from the analysis. To identify disease modules, frequency of these terms in each

individual kinase neighborhood - composed of the kinase itself and its direct interactors – was compared to the frequency of the

terms in the background set. Background set was composed of Uniprot proteins in the representative human proteome (version

August 2016 with 20,197 entries in total) after excluding proteins identified in the kinase network. In addition, only proteins with at

least one OMIM annotation were included in the analysis. To identify disease terms overrepresented around individual kinases,

Fisher’s exact test followed with Benjamini-Hochberg correction was applied. Significant terms were visualized and at this step three

mitochondrial ribosomal proteins around the MAST1 kinase were removed. The kinase is located within cytoplasm and has a role in

cytoskeleton regulation, so there is a risk that these could be false identifications.

Functions associated with the POMK interaction partners were investigated separately. Information on the GO terms and KEGG

pathways that weremost strongly overrepresented in a comparison with all other human proteins was obtained using the annotations

in DAVID database (release 6.8). Terms that were highly significant (p value < 0.0001, Benjamini Hochberg correction) and where

gene sets annotated with the particular term were not subsets of the more significant terms were visualized (i.e., overlapping terms

are not reported in the figure).

In order to expand the list of gene-disease associations, DisGeNET v5.0 table with all available associations was retrieved (Piñero

et al., 2015). This included annotations with different confidence levels and gene-disease relationships that were of a lower confi-

dence were skipped. These were the terms supported only (i) either by the BeFree text mining system, or (ii) Human Phenotype

Ontology, or (iii) Genetic Association Database or (iv) only by Comparative Toxicogenomics Database. Analogously to the OMIM

analysis, only disease terms annotated to at least three proteins from the kinase network were considered, and kinase interaction

partners that were chaperones, actin or myosin proteins, were omitted from the analysis. Additionally, all cancer-associated terms

were skipped as cancer was studied separately. Again, occurence of each term was counted within each kinase neighborhood, and

significant overrepresentation compared to the background human proteins (i.e., UniProt reference proteome after excluding pro-

teins identified in this study) was assessed with the Fisher’s exact test, followed with the Benjamini Hochberg correction. For the

consistency in calculations, chaperones, actins and myosin proteins were also excluded from the background set and only proteins

with at least one DisGeNET annotation were considered.

Cellular phenotype assay
In order to identify kinases whose interaction partners are enriched in roles associated with cell shape regulation we searched for the

interactors annotated with Uniprot GO terms that contained the words ‘ciliary’, ‘cytoskeleton’, ‘polarity’, ‘kinasin’, ‘microtubule’,

‘focal adhesion’, ‘cell adhesion’, ‘lamellipodium’, ‘mitotic’ or ‘actin filament’. To increase the specificity of the identified kinases,

enrichment was calculated by excluding (i) chaperones (i.e., interactors with HSP, Cpn60 or FKBP domain, or those that contained

HSP or chaperon in their name), (ii) cytoskeletal proteins that frequently copurify in AP-MSwith different baits (this was donewith text-

mining of protein names, and those that contained MYH, ACTIN, or started with CCT, ACT, ACL or ARP were skipped), and (iii) pro-

teins that interacted with more than 10 different kinases. Enrichment was calculated by comparing interactors of individual kinases to

the background of all Uniprot proteins. Significant kinases that already had strong support and a confident GO term that indicated

their role in the cellular shape regulation were excluded. In addition to kinases selected in this way, we included in the screen kinases

from the NEK7 interaction neighborhood (NEK6 and NEK9) and, based on preliminary literature links, also the SCYL3 pseudokinase.

Finally, positive and negative control siRNAs were also included in the screen. Whenever possible, validated ThermoFisher siRNA

reagents were used in the experiments.

Two human cell lines LN-229 (glioblastoma cell line) and SKOV3 (ovarian cancer cell line) were used for the siRNA silencing exper-

iments. LN-229 cells were cultured in DMEM media supplemented with 2% FBS, 1% Pen-strep, and 25mM HEPES while SKOV3

cells were cultured in RPMI-1640 media supplemented with 10% FBS and 1% Antibiotic-Antimycotic (all products from GIBCO).

Cells were passaged at approximately 70% confluency with 0.25% Trypsin-EDTA (GIBCO, 25200056) and seeded at 0.7-1.0x103

cells/well into clear-bottom, tissue-culture treated, CellCarrier-384 Ultra Microplates (Perkin Elmer, 6057300) with three replicate

wells per condition. Silencer Select Pre-Designed siRNAs (Table S5) were transfected at 0.66 pmol/well using Lipofectamine RNAi-

MAX (Invitrogen, 13778075). Both the siRNAs and Lipofectamine transfection reagent were dispensed using a Labcyte Echo liquid

handler in a randomized plate layout to control for plate effects. For each gene target, between 1-3 siRNAs were tested for both cell
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lines. Cells were incubated at 37C, 5%CO2 for 48 hours following siRNA transfection. Cells were subsequently fixed with 4% PFA in

PBS, blocked for 1 hour at room temperature in blocking solution (PBS containing 5%FBS and 0.1%Triton). Cells were stained over-

night at 4C in blocking solution with the following antibodies: Alexa Fluor� 488 anti-Vimentin (1:1000, Biolegend, #677809), Alexa

Fluor� 647 anti-Tubulin Beta 3 (1:1000, Biolegend, #657406) and DAPI (10mg/ml, 1:1000, Sigma Aldrich). High-content imaging

was performed with an Opera Phenix automated spinning-disk confocal microscope at 20x magnification (Perkin Elmer,

HH14000000). Tomeasure cell area shape features, single-cells were segmented using CellProfiler 2.2.0 (McQuin et al., 2018). Nuclei

segmentation relied on the DAPI channel, while LN-229 cytoplasmic segmentation utilized the Tubulin Beta 3 (TUBB3) channel and

the SKOV3 cytoplasmic segmentation utilized the Vimentin (VIM) channel. CellProfiler module ‘MeasureObjectSizeShape’ based on

the cytoplasmic segmentation was used to derive 18 different cell area shape features. Area shape features that were not dependent

on cell density were chosen for plotting. Downstream image analysis and data visualization was performed with MATLAB R2019a

where single cell feature data was averaged across each well/condition and compared to the negative siRNA control. Student’s

paired t test was performed to calculate statistical significance.

Identification of kinase modules associated to cancer
Kinase modules with overrepresentation of CA proteins were identified in a similar approach as other disease modules. The list of

known CA proteins was compiled from the known cancer drivers deposited in the Cancer Gene Census (version January 2017) (Fu-

treal et al., 2004) and from a prominent review on the roles of cancer proteins (Vogelstein et al., 2013). Additionally, the list of CA pro-

teins was extendedwith those identified as frequently mutated in two recent comprehensive analyses of pan-cancer patient mutation

data (Davoli et al., 2013; Lawrence et al., 2014). In this and the following analyses, heat shock proteins were excluded due to their

broad scope of kinase interaction partners. In order to assess if the interactome of CA kinases was enriched in other CA proteins,

a set of all kinase interaction partners was divided into those that interacted with one or more of the CA kinase baits and all other

interactors, and a fraction of CA proteins was noted in each set. Additionally, a background fraction of CA proteins was calculated

in the set of all other Uniprot proteins in the representative human proteome after excluding proteins in the kinase network (UniProt

Consortium, 2015) (version August 2016). A tendency of CA kinases to interact with proteins that are also associated with cancer was

assessed with the chi-square test in the comparison to two other sets.

Next, a fraction of CA proteins in each kinase neighborhood, i.e., a set of proteins formed by each kinase and its interactors, was

calculated and compared to the fraction of CA proteins in the background set of all other Uniprot proteins, when excluding those in

the kinase network. Modules with at least two CA proteins were assessed and significant clusters were identified using the Fisher’s

test and Benjamini Hochberg correction for the obtained p values. DYRK1A/B kinases were excluded from the final list of significant

kinase clusters due to their known interaction with adenoviral E1A protein expressed in HEK cell line (Komorek et al., 2010). Further-

more, the interaction network for the most significant modules (adjusted p value < 0.025) was visualized using the Cytoscape soft-

ware (Kohl et al., 2011). In order to functionally annotate the significant modules, KEGG, Biocarta and GO biological process anno-

tations were retrieved for all proteins in the network using DAVID service (Dennis et al., 2003). Terms that were most frequently

occurring within each module were listed, and manually checked in order to select the ones that are most frequent, and when

possible, that occur also in other modules in the network.

BioID experiments
The expression of FLAG-BirA*-tagged Dyrk2 (T-REx-HEK293 Flp-In cells) or Pim3 (T-REx-HeLa CCL2 Flp-In cells) was induced by

addition of 4ug/ml doxycycline for 24h in one 150 mm tissue culture plate. Then the media was replaced by fresh media supple-

mented with 50 mm biotin and cells were incubated for additional 24h. Cells were harvested and snap frozen in liquid nitrogen fol-

lowed by cell lysis in 1mLRIPA buffer (50mMTris-HCl (pH 8), 150mMNaCL, 1%Triton X-100, 1mMEDTA, 0.1%SDS supplemented

with 1mMPMSF and protease inhibitor cocktail (Sigma)) and Benzonase (Sigma) treatment (250U) at 10�C for 30min. Cell debris was

removed by centrifugation (20000 x g, 20 min at 4�C) and the cleared cell lysate was incubated with disuccinimidyl suberate (DSS)

(Sigma) crosslinked Strep-Tactin beads (IBA LifeSciences) for 1h on a rotation shaker at 4�C. Then beads were washed three times

with RIPA buffer, three times with HNN buffer (50 mM HEPES (pH 7.5), 150 mM NaCl, 50 mM NaF) and two times with 100 mM

NH4CO3. For protein denaturation the beads were incubated with 8 M urea followed by reduction with 5 mM Tris(2-carboxyethyl)

phosphine TCEP and protein alkylation with 10 mM iodoacetamide. The sample was diluted to 4 M urea with 100 mM NH4CO3

and proteins were digested on the beads with 0.5 mg LysC (Wako) for 3h followed by dilution to 1 M urea and digestion by 0.8 mg

trypsin overnight. In order to stop protein digestion 5% formic acid was added and the peptides were purified by

C18 UltraMicroSpin columns (The NestGroup) and dried in a speedvac. The dried peptides were dissolved in 2% acetonitrile and

0.1% formic acid.

BioID-MS data analysis
In general, BioID-MS experiments were performed in triplicates (n = 3). Acquired MS/MS scans were searched against the

UniProtKB/Swiss-Prot protein database (31.03.2016) using MaxQuant v1.5.2.8 (Cox and Mann, 2008) with default parameters.

High confidence interactors of FLAG-BirA*-Dyrk2 were determined by filtering against proteins identified in FLAG-BirA*-GFP control

experiments. Proteins significantly enriched (log2FC R 1, adj. p value % 0.05) compared to the GFP control were considered as

high confident interaction partners. The fold change of interactors was calculated based on precursor MS1 values (LFQ intensities)
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determined byMaxQuant v1.4.2.8. The statistical analysis was performed by customized R scripts. Briefly, MS1 intensities were me-

dian-normalized and missing values were imputed using random sampling from a distribution based on the 5th lowest quantile.

Changes in the Dyrk2 BioID interaction network upon perturbation were quantified using bait-normalized precursor MS1 intensities

(LFQ intensity). The statistical analysis was performed as described above.

For the identification of high confident interaction partners of FLAG-BirA*-Pim3 expressed in HeLa CCL2 cells the BioID-MS inter-

action dataset was filtered with SAINTexpress (Mellacheruvu et al., 2013) using default parameters and sixteen control experiments

(FLAG-BirA* and FLAG-BirA*-GFP expressed in HeLa CCL2 cells) of the CRAPome database (http://crapome.org/). IDs assigned

with a SAINT score = 1 were considered as high confidence interactors.

DNA damage induction
To generate a reference list of DNA repair proteins, we obtained a set of proteins which are confidently annotated with the process

(Arcas et al.,2014) and we extended it with proteins that were shown to physically migrate to the foci of DNA damage after UV laser

microirradiation (Izhar et al., 2015). In order to confirm BIRC6 as new Dyrk2 interaction partner and to investigate Dyrk2 interactome

remodeling in response to DNA damage we performed BioID-MS interaction analysis with BirA-tagged Dyrk2 under normal condi-

tions and upon induction of DNA damage by Adriamycin (ADR). In contrast to AP-MS, proximity labeling by BioID allows stringent

lysis conditions that disrupt the nuclear membrane and facilitates the identification of nuclear interaction partners. To induce geno-

toxic stress HEK293 cells were treated with 2 mg/ml ADR for 24h and the quantification of changes in the Dyrk2 interactome was

based on precursor MS1 intensities obtained from MaxQuant v1.5.2.8. Interaction partners were accurately quantified with a repli-

cate CV < 9% and the triplicates of untreated and ADR treated cells emerge as individual cluster (Figure S5B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Protein identification
Acquired spectra were searched with X!Tandem (Craig and Beavis, 2004) (release 2011.12.01) against the canonical human proteome

reference dataset (http://www.uniprot.org/), extended with reverse decoy sequences for all entries. The search parameters were set to

include semi-tryptic peptides (KR/P) containing up to two missed cleavages. Carbamidomethyl (+57.021465 amu) on Cys was set as

static peptidemodification. Oxidation (+ 15.99492 amu) onMet and phosphorylation (+79.966331 amu) on Ser, Thr, Tyr were set as dy-

namic peptide modifications. The precursor mass tolerance was set to 25 ppm, the fragment mass error tolerance to 0.5 Da. Obtained

peptide spectrummatches were statistically evaluated using PeptideProphet and protein inference by ProteinProphet, both part of the

TransProteomicPipeline (TPP, v.4.6.0) (Deutschetal., 2010).Aminimumprotein probability of 0.9wasset tomatcha falsediscovery rate

(FDR) of < 1%. The resulting pep.xml and prot.xml files were used as input for the spectral counting software tool Abacus to calculate

spectral counts and values (Fermin et al., 2011) (release 2013.02.14). Raw MS data is available at the following site: https://db.

systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?identifier=PASS01469. The site also includes peptide identifications from

all MS runs (all_pep_xml_together.txt), and provides the script and instructions for filtering that corresponds to Abacus criteria and gen-

erates peptide identifications used in this study (processingPepXml.pl and NOTES_ON_PEP_XML).

Evaluation of high confidence interacting proteins (HCIP)
To identify the best performing strategy to filter the obtained AP-MS raw data we compared the receiver operator characteristics of

several established computational methods using published kinase protein interactions (reported by at least two references) and the

corresponding random set of protein interactions. We found that the weighted D (WD) score (Sowa et al., 2009) as well as spectral

count ratios corrected for false positive detection based on data from a large set of GFP control purifications outperformed the other

scores tested with respect to sensitivity and specificity (Figure S1A). We therefore combined WD score and spectral count ratios for

generating the final high-confidence protein interaction dataset. The chosen cutoff for theWD score and the spectral count ratios was

set to keep the number of false positive interactions below one percent as determined from the ROC curve while maximizing the re-

covery of already known PPI in the filtered data.

A custom CompPASS implementation was used to compute the WD-score derived from the original method (Sowa et al., 2009):

WDi;j =

 
kPi = k
i = 1fi;j

� uj
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� xi;j
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xj

!

s = standard deviation of total spectral counts for interactor j
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xj =

Pi = k
i = 1;j = nxi;j

k

n = 1;2;.;m ðindex of interactorÞ
k = total number of baits

p = number of replicate runs in which the interactor is present

r = number of replicate runs per bait

The GFP-ratio was computed using all control measurements and defined as the differential expression of the interactors over the

mean of all controls:

GR = xi;j

.
xj

, where xj was set to the minimum value > 0 of all interactors, if xj = 0.

Total spectral count values of identified co-purified proteins were compared to a control AP dataset consisting of 94 Strep HA-GFP

purification experiments, from which 68 GFP control datasets have been measured on an LTQ Orbitrap XL mass spectrometer and

deposited in the CRAPome contaminant repository for affinity purification (Mellacheruvu et al., 2013).

A custom R script was used to select an enrichment cut off over the control dataset (GFP-ratio) and a WD-score threshold, candi-

date bait-prey interactions were looked-up for literature references in the IntAct database (release date: 31.03.2015). Matches with at

least two publications were considered to be true positive hits. A corresponding number of true false hits was generated by permu-

tation of the prey and bait identifiers in the input Table 20 timeswith replacement and random sampling. TheWD-score andGFP-ratio

thresholds of 73.6 and 18.4, respectively, were selected by computation of receiver operating characteristic and selection of a FPR

threshold of 1%.

Only candidate interactions above the WD-score and GFP-ratio threshold were considered to be of high confidence. Additional

filtering criteria applied included removal of Keratins, adenoviral proteins, self-bait interactions, iRT peptides, obsolete entries and

interactions that had a total number of spectral count lower than 2. Finally, interactors present in more than 70%of the 411CRAPome

human control runs (v1.1) as well as residual carry-over proteins were removed from the filtered table.

Co-purification analysis
A local perl script was used to apply the hypergeometric test and calculate significance of co-purification for each of the protein pairs

that were purified together with the same kinase baits. In the formula for hypergeometric test the variables were:

PðmÞ =

�
k
m

��
n� k
l �m

�
�
n
l

�

m = Number of times two proteins are seen with the same kinase bait

k = Number of kinase baits protein 1 was purified with

l = Number of kinase baits protein 2 was purified with

N = Total number of kinase baits

The obtained values were adjusted for multiple testing using Benjamini-Hochberg correction. The most significant terms are de-

picted as a network and shown in Figure 2. Only the pair NUP188 – GCN1 is left out from the illustration. The reason for this is that

NUP18 is present in 25% of the studies in the CRAPome database and there is a risk it could be a non-specific binder.

Additional resources
Interaction data was deposited onto the following website:

https://sec-explorer.shinyapps.io/Kinome_interactions/.
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