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A functional analysis of 180 cancer cell lines reveals
conserved intrinsic metabolic programs
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Abstract

Cancer cells reprogram their metabolism to support growth and
invasion. While previous work has highlighted how single altered
reactions and pathways can drive tumorigenesis, it remains
unclear how individual changes propagate at the network level
and eventually determine global metabolic activity. To character-
ize the metabolic lifestyle of cancer cells across pathways and
genotypes, we profiled the intracellular metabolome of 180 pan-
cancer cell lines grown in identical conditions. For each cell line,
we estimated activity for 49 pathways spanning the entirety of the
metabolic network. Upon clustering, we discovered a convergence
into only two major metabolic types. These were functionally con-
firmed by 13C-flux analysis, lipidomics, and analysis of sensitivity to
perturbations. They revealed that the major differences in cancers
are associated with lipid, TCA cycle, and carbohydrate metabolism.
Thorough integration of these types with multiomics highlighted
little association with genetic alterations but a strong association
with markers of epithelial–mesenchymal transition. Our analysis
indicates that in absence of variations imposed by the microenvi-
ronment, cancer cells adopt distinct metabolic programs which
serve as vulnerabilities for therapy.
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Introduction

Over the past two decades, altered metabolism has re-emerged as a

prominent hallmark of cancer (Ward & Thompson, 2012; Pavlova

et al, 2016),. Beyond the seminal example of aerobic glycolysis

(Warburg & Minami, 1923), multiple examples of dysregulated path-

ways and novel essential reactions have been presented (Dang

et al, 2009; Jain et al, 2012; Son et al, 2013) and gave rise to tailored

therapeutic opportunities. A key lesson in oncology that also

extends to metabolism is that tumors are heterogeneous and, there-

fore, their sensitivities to drug or genetic treatments can differ

greatly. In the context of metabolism, a main driver of heterogeneity

is the tumor microenvironment. Previous studies have demon-

strated the relevance of oxygenation and cancer specific nutrient uti-

lization (DeBerardinis et al, 2007; Elia & Haigis, 2021), which give

cancer cells a unique growth advantage. The second, intrinsic driver

of heterogeneity is the genetic makeup of tumor cells, which varies

between and within tumors. Mutations in coding sequences or regu-

latory regions and alterations in copy number may affect gene

expression and the activity of proteins and, hence, enzymes. Muta-

tions result in granular differences in pathway utilization, some of

which provide a fitness advantage for tumor growth.

Even though intrinsic factors are rooted in genetic variations,

genomics is poorly suited to investigate the metabolic heterogeneity

of tumor cells. Beyond specific alterations that are frequently recur-

ring in some cancer types (e.g., IDH1 (Dang et al, 2009) or PKM2

(Dayton et al, 2016)), sequencing of DNA or RNA fails to provide an

integrated understanding of pathway activity and carbon fluxes. The

latter are hard to predict because they are an emerging property gov-

erned also by nutrient availability (i.e., the microenvironment) and

allosteric regulation, both of which are not captured by genomics

and transcriptomics. Among the arsenal of omics technologies that

are available to investigate the molecular underpinnings of cancer

cells (reviewed in Li et al, 2019b), metabolomics is the ideal

approach to assess metabolism in action. In part, this is because

regardless of the cause, intrinsic or extrinsic, changes in fluxes are

associated to changes in the level of intermediates of the affected

pathways.

The power of metabolomics in unraveling metabolic peculiarities

of cancer cells is neatly demonstrated by previous milestone studies.

For instance, Jain et al (2012) highlighted heterogeneity in metabo-

lite uptake and secretion rates and revealed the role of glycine in

tumor proliferation. Another example by Chen et al (2019)

combined 13C tracing and metabolomics to reveal the relation
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between central carbon metabolism reprogramming and oncogenic

drivers in lung cancers. More recently, Li et al (2019a) investigated

the relation between individual metabolites and genetic alterations.

The authors have identified an association between asparaginase’s

hypermethylation and asparagine, which serves as a potential ther-

apy selection for specific tumors. Overall, metabolomics has been to

use to unravel single metabolites or pathways dysregulation in

cancers. However, no systematic characterization of metabolic-wide

pathway activity has been accessed to date, thus, leaving some

unexplored understanding, like identifying which parts of the net-

work are conjointly reprogrammed.

Here, we leveraged the broad scope of untargeted metabolomics

to characterize the intrinsic metabolic heterogeneity of a panel of

180 cancer cell lines across the full metabolic network. To exclude

environmental factors, we grew the cancer cell lines in the same

medium. We profiled ca. 1,800 putative deprotonated metabolites

across the full panel. To gain a global view of metabolic reprogram-

ming, we estimated activity scores for 49 metabolic pathways using

factorization by principal components. In spite of the genetic variety

of the tested 180 cell lines, we show that they cluster into two meta-

bolic types, which we validated using lipidomics, 13C tracing, and

pathway sensitivity analysis. Integration of the metabolic types with

genomic and phenotypic data revealed a strong connection with

EMT status, which emerges as a main determinant of intrinsic meta-

bolic activity.

Results

Large-scale metabolic profiling and analysis of cancer cell lines

We set out to broadly characterize the metabolic diversity of

cancer cell lines by untargeted metabolomics (Fig 1A). To gain a

representative dataset, we selected a large panel of 180 cancer cell

lines encompassing 11 different lineages (Fig 1B). Our panel over-

lapped substantially with other major cell line panels, such as the

CCLE (Ghandi et al, 2019), COSMIC (Forbes et al, 2015), and the

NCI60 (Shoemaker, 2006; Fig 1C). As our objective was to focus

on intrinsic heterogeneity and not be affected by differences in

environment (Lagziel et al, 2020), we cultured the cell lines in the

utmost comparable condition. We grew cells in the same nutrient

condition and extracted at comparable confluency and during

exponential growth. Sample generation were organized in seven

major batches, with two cell lines (MCF7 and MDBADM231)

included in all batches. The study design included six measure-

ments per cell line, assessed by untargeted metabolomics by flow

injection, high-resolution mass spectrometry (Fuhrer et al, 2011;

see details in Materials and Methods). Upon data processing and

quality control, the resulting metabolomic dataset included 1,809

ions putatively associated to deprotonated metabolites for a total

of 1,195 measurements.

The resulting data were subject to an in-depth reproducibility

analysis based on the repeated injections of MCF7 and

MDBADM231 across the dataset. We used multiple quality metrics

calculated for these control cell lines to measure the effect of multi-

ple, state-of-the-art normalization procedures (see details in Materi-

als and Methods). We identified the combination of quantile

normalization and ComBat (Johnson et al, 2007) as the best option

to correct for sample-to-sample differences and batch biases, respec-

tively (Table EV1).

Inference of metabolic phenotypes

A grand challenge in analyzing metabolomics data is interpreting the

cause of metabolite changes. For instance, the increase of an individ-

ual metabolite could point both to an increase of pathway flux as

well as a block of the pathway immediately downstream. To distin-

guish between these opposite cases, it is necessary to analyze all

detectable intermediates of a pathway together. In practice, when

the flux of a pathway changes, a shift with coherent sign is observed

for most intermediates in the pathway. This is a consequence of

enzyme kinetics and the fact that enzymes normally operate close to

their substrate affinity (e.g., the Michaelis–Menten affinity constant

KM) and far from saturation (Bar-Even et al, 2011; Park et al, 2016).

Therefore, flux changes cause mild but ubiquitous effects in metabo-

lites. To capture such flux-relevant effects, we devised a strategy that

uses principal component analysis to identify common trends across

all detectable intermediates of a given pathway (see details in Materi-

als and Methods). A similar concept was successfully applied to gene

expression data (Segura-Lepe et al, 2019), and we demonstrate that

it holds for metabolic systems with exemplary data set (Hackett

et al, 2016; Fig EV1). Using curated metabolic pathways definition,

we projected all cell lines on the first principal component, which

provides a qualitative proxy for pathway activity, termed “pathway

score.” Out of the 1,809 putatively annotated ions, 367 could be

mapped to KEGG metabolic pathways. Based on this subset, we

could infer the pathway score for 49 metabolic pathways.

To gain a top-down view of the differences in pathways scores

across cancer cell lines, we applied hierarchical clustering (Fig 2).

Surprisingly, only two major clusters of cell lines emerged, which

we refer to as metabolic types. The first cluster (left) was character-

ized with generally high activity scores for most of the pathways of

central carbon metabolism, for example, carbohydrate metabolism,

amino acid metabolism, and nucleic acid metabolism. The second

cluster (right) was associated with high activity scores in fewer

pathways, which includes part of lipid metabolism pathways and

cofactor and vitamin metabolism.

Association of multiomics to metabolic types

Identifying only two major clusters across a panel of 180 cancer cell

lines was a surprise as it indicates convergence into a few, robust

metabolic program. Following this clustering, we performed an in-

depth association analysis to find whether one of the branches of

the hierarchical clustering tree was associated with any property or

trait of the cell lines (e.g., tissue and batch, Fig 2). Tested traits

included metadata related to sample collection, histologic proper-

ties, genomics, transcriptomics, etc. (Table EV2). We assembled the

information of 60,328 traits and for each calculated associations to

all tree branches with at least 18 cell lines. This resulted in

1,025,576 P-values that accounted for false discovery rate (see Mate-

rials and Methods for details). By this procedure, we sought to iden-

tify the most significant associations in the clustering tree. In total,

we identified 856 significant associations between a trait and a

branch of the clustering tree derived from pathway activity scores

(Fig 3 and Table EV2).
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To exclude that the clustering was biased by noncellular factors,

we tested whether any association existed between the tree struc-

ture and experimental variables. We found the right cluster, named

type 1, was associated with batch no. 6 (Fig 3). It must be noted that

batch no. 6 included all cell lines that were grown in suspension.

All other batches dealt with adherent cells. Rather than pointing to

batch effects, we believe that this association highlights fundamen-

tal differences between growth conditions. No further association

was found. This is a positive outcome as it indicates the clustering

was not biased by experimental parameters such as growth rate.

The association analysis was extended to metadata available for

many cell lines in CCLE (Ghandi et al, 2019) on cancer type, histol-

ogy, histology subtype, pathology, or ethnicity of the cancer donor.

In line with Li et al (2019a) and the aforementioned clustering of

suspended cells, hematopoietic cells were found to be associated

with type 1.

We moved on to evaluate whether the observed metabolic types

were associated with molecular traits at genomic, transcriptomic, or

proteomic level. Our goal was to characterize the differences

between metabolic types and to seek for potential upstream regula-

tors that drive the division into robust types. Using mutation data

and focusing mainly on cancer genes (Li et al, 2019a), we found

only one association between a subcluster of type 2, the left cluster,

and mutations in Axin 1 (AXIN1). AXIN1 is a component of the

beta-catenin destruction complex and thus its mutation can promote

the accumulation of this cell-to-cell adhesion molecule (Jeong

et al, 2018). In copy number data (Li et al, 2019a), we found two

associations with minor subclusters. For instance, a sub-cluster of

type 1 was associated with loss of Cyclin-dependent kinase inhibitor

2B (CDKN2b), which acts as cell growth regulator (Adamovic

et al, 2008). We next considered the methylation status of cancer

genes and found 252 significant associations, thereby highlighting a

strong link between epigenetic regulation and metabolic pheno-

types. Notable associations are highlighted, like the two negative

ones between type 1 and Thrombospondin 1 (THBS1), and CXADR-

like membrane protein (CLMP), both linked with cell-to-cell adhe-

sion and interaction. THBS1, an activator of transforming growth

factor-beta (TGFb), has been shown to promote an aggressive phe-

notype through EMT (Jayachandran et al, 2014). In support of this

claim, we also found a negative association between type 1 and

Eukaryotic translation initiation factor 5A-2 (EIF5A2), known to also

induce EMT (Zhu et al, 2012; Khosravi et al, 2014),
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Figure 1. Metabolic profiling of 180 cancer cell lines.

A Schematic summarizing the workflow developed for the comparison of cancer cell lines metabolite profiles.
B 180 cancer cell lines from more than 11 tissues of origin were profiled.
C Overlap of this study cell line panel (METAB) with major cell lines resources such as Cancer Cell Line Encyclopedia (CCLE), National Cancer Institute 60 panel (NCI60),

and the Catalogue Of Somatic Mutations In Cancer panel (COSMIC).
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In the expression data provided by the CCLE, we identified 453

associations. Because of this large number, we focused on genes

that could be related to each other using the String database (Szklar-

czyk et al, 2017), to find known interactions or shared biological

processes among protein coding genes. Two negative associations

were identified between type 1 and CDP-diacylglycerol synthase 1

(CDS1) and lysophosphatidic acid phosphatase type 6 (ACP6). Since

both target genes which encode for enzymes involved in the biosyn-

thesis of glycerophospholipids, it may suggest a reduction in lipid

synthesis in type 1. We identified positive associations between type

1 and THBS1 expression. As previously observed, THBS1 was less

methylated in type 1 and is more expressed in type 1, hence consoli-

dating its association to type 1. Finally, we found 109 proteins sig-

nificantly associated to some branches, obtained from antibody and

mass spectrometry-based (Nusinow et al, 2020) approaches

(Appendix Fig S1). Of note, p53 levels were lower in type 1 com-

pared to the other types. P and E-cadherin, classical markers of

epithelial cells (Ribeiro & Paredes, 2015) had significantly lower

levels in type 1.

We hypothesized that the observed, robust metabolic types

might be driven by common regulatory mechanisms. Therefore, we

tested whether transcription factor activity and signaling pathways

are associated with pathway score clusters. For 743 transcription

factors (TFs), we assessed whether differential genes were overrep-

resented in known TF-targets (Ortmayr et al, 2019). We identified

115 associations between TFs and the clustered metabolic pheno-

types. Several interesting hits were linked to the major type 1 and

1B, middle cluster which bears many similarities to type 1: hypoxia-

inducible factor 1-alpha (HIF1A), previously associated with aggres-

sive tumor phenotypes, treatment resistance, and poor clinical prog-

nosis (Wigerup et al, 2016); TP63, known to regulate migration,

invasion, and in vivo pancreatic tumor growth (Somerville

et al, 2018); and snail family transcriptional repressor 1 (SNAI1),

involved in EMT induction. We further tested the activity of 14
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Figure 2. The metabolic activity landscape of cancer cell lines.

Inference of pathway score, a proxy for pathway activity, for 49 KEGG metabolic pathways. Hierarchical clustering of: (above) cell lines, colored by their tissue of origin
and the batch they were grown in, (side) metabolic pathways, colored by their pathway class (cell lines n = 180, three biological replicates and two technical per cell line
averaged).
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signaling pathways (Schubert et al, 2018) and identified a positive

association between TGFb and tumor necrosis factor TNF-related

apoptosis-inducing ligand (TRAIL) signaling with type 1 and 1B.

Recent findings highlighted the potentially aberrant consequence of

TGFb and TRAIL activation in promoting cell motility and metasta-

sis (Fulda, 2013; Hao et al, 2019; Yeh et al, 2019).

Association between EMT and metabolic types

Several of the significant associations pointed to an increase of

metastasis-related processes, that is, EMT. To directly test this

hypothesis, we used the EMT score proposed by Rajapakse

et al (2018). The score is based on gene expression of known EMT

markers to quantify the potential of invasiveness and metastasis for-

mation of cancer. A high EMT score is associated with epithelial

state and a low EMT score to mesenchymal state. In our dataset, we

could confirm that type 1 and 1B were linked with the mesenchymal

state, and type 2 with the epithelial state (last line, Fig 3). We vali-

dated the putative EMT association experimentally. We selected rep-

resentative cell lines of the two main metabolic types 1 and 2, and

stained the canonical EMT markers vimentin and E-cadherin using

immunofluorescence (Fig EV2). In line with the expectations, the

mesenchymal marker vimentin was higher in type 1 (P-

value < 1 × 10�3, Student t-test), and the epithelial marker E-

cadherin was higher in type 2 (P-value < 1 × 10�3, Student t-test).

Microscopy analysis also highlighted the expected morphology
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Figure 3. The drivers of metabolic activity phenotypes.

Summary of significant associations between metabolic types, displayed above as hierarchical cluster taken from Fig 2, and multiomics. The list and number of traits
integrated to the metabolic phenotype are listed on the right panel, where traits were considered significant at 10% FDR (cell lines n = 180). For visualization, q-values
were extended with a sign to indicate whether the trait is significantly higher or lower in comparison to the rest of the tree. Only traits significantly associated to the
three main types (1, 2, and 1B) are shown for methylation, transcript, protein and transcription. Full results are reported in data availability.
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differences. Type 1 cells featured spindle-like shapes resembling

fibroblasts, whereas type 2 portraited rounded regular shapes, con-

sistent with EMT progression.

To further substantiate the association to EMT, we have com-

pared the expression of EMT genes across all cell lines

(Appendix Fig S2). We found that a high number of EMT genes (57

out of 197) are significantly changing between the types, with

notable example of vimentin (VIM) more expressed in type 1 and

cadherin (CDH1 and CDH3) more expressed in type 2

(Appendix Fig S2C). A similar trend was found on the protein level

for cadherin (Appendix Fig S2D). Altogether, gene expression data,

immunostaining and morphology substantiate the association

between the main observed metabolic types and EMT.

Differences in metabolic pathway activity unraveled by 13C tracing

The association analysis provided novel leads on the regulatory dif-

ferences that characterize the main metabolic types, but does not

draw robust hypotheses on nutrient utilization or nutrient fluxes. To

directly assess differences in pathway usage between the major

metabolic types, we used an untargeted 13C-labeling analysis

approach. The goal was to confirm whether conserved differences

in fluxes could be identified between type 1 and 2. Given the generic

preference of cancer cell lines for glucose and glutamine, we grew

nine representative but diverse cell lines of the two types in media

enriched with either [U-13C]glucose or [U-13C]glutamine for 48 h.

Upon metabolite extraction from cells, we used mass spectrometry

to measure 13C-enrichment in metabolites and, in turn, to quantify

their fractional contribution (FC). Given the experimental design in

which a single substrate is labeled, the FC of each detectable

metabolite informs on the fraction of carbon that originated from

either glucose or glutamine. To highlight differences in carbon

fluxes between type 1 and type 2, we computed the difference in FC

between the averages of the two types (Fig 4A). This allowed for a

ranking of all measured metabolites according to FC differences,

with exemplary metabolites with divergent FC displayed in

Appendix Fig S3. To consolidate the results at the pathway level, we

sought for pathway enrichment in both tails of the ranked metabo-

lite list. For the example of TCA cycle metabolites, the 11 detected

metabolites were mostly ranked toward type 2, resulting in a signifi-

cant enrichment of the pathway with type 2 (q-value < 0.01, Hyper-

geometric test).

On [U-13C]glucose, the vast majority of pathways of primary meta-

bolism exhibited higher 13C-labeling in type 2 cells (Fig 4B). This

indicates that more glucose is used to replenish central carbon meta-

bolism, amino acids, nucleotides, and fatty acids. In contrast, type 1

cells showed a slight enrichment in glucose-derived 13C in the path-

ways related to carbohydrate metabolism and storage, which are

often confused because of the numerous isomers that cannot be

resolved analytically. The [U-13C]glutamine revealed less differences

between the two types, mostly because the measured FC were gener-

ally lower (right panel Fig 4B). This indicates that glutamine-derived

carbon is only slightly differentially assimilated between the types.

Alterations in lipid metabolism between metabolic types

Multiple evidence suggested that the main metabolic types might

differ in lipid metabolism. To validate this finding, we analyzed the

lipidome of seven representative cell lines by LC–MS/MS. We could

detect and quantify 305 lipid species (Fig 5) and found that most

lipid classes were slightly but reproducibly more abundant in type 1

cell lines (Fig 5A and B, Appendix Fig S4). Despite their minor con-

tribution to total lipids, we stress that total cardiolipins (P-

value < 0.01) and phosphatidylglycerols (P-value < 0.05) contents

were higher in type 2 (Fig 5C). These lipids constitute the mem-

brane of mitochondria and, therefore, suggest an increase of mito-

chondrial mass in type 2. Conversely, lipids associated with the

extracellular membrane such as phosphatidylserines (P-

value < 1 × 10�3) and sphingomyelins (P-value < 0.01) were higher

in type 1, consistent with the spindle-like morphology that requires

increased membrane surface. Ether phosphatidylcholines and tria-

cylglycerols were characterized by remarkable within-type shifts

(Appendix Fig S4). We thus compared the species by double bond

and acyl chain length and found that triacylglycerols had shorter

chain length in type 1 cell lines (Appendix Fig S5A) and longer for

ether phosphatidylcholines (Appendix Fig S5B). This could point at

differences in synthesis compared to uptake in these two lipid

classes. Type 2 cell lines had generally higher levels of lipid unsatu-

ration (Fig EV3), including the main constituents of the cell mem-

brane phosphatidylcholines (P-value < 1 × 10�4) and ether

phosphatidylcholines (P-value < 0.01). Lower saturation decreases

tight packing of acyl chains and, in turn, increases membrane fluid-

ity (Jain et al, 2020).

Given the differences observed in lipid content between the two

main metabolic types, we measured differences in lipid biosynthesis

rates. To assess how much of the lipids are made de novo, we fed

cells for 48 h with either [U-13C]glucose or [U-13C]glutamine

medium. Lipid extracts were analyzed by LC–MS. Analysis of 13C-

labeling in lipids is more challenging than for polar metabolites

because of their larger number of carbon atoms which causes a

redistribution of the signal detected in an unlabeled sample to

dozens of isotopic peaks in a labeling experiment. To maximize the

quality of the data, we selected the most abundant representatives

for each lipid class and performed targeted data extraction to deter-

mine full mass distribution vector.

The resulting data revealed striking differences between the two

metabolic types. This is shown exemplarily for TAG 50:1 grown on

[U-13C]glucose, an abundant member of triacylglycerols (Fig 5D).

In the type 1 representative cell line HS578T, 24% of carbon atoms

were labeled and the largest isotopologue was M + 3, which results

from the fusion of a 13C3-glycerol backbone and unlabeled acyl

chains. In contrast, the type 2 representative cell line T47D fea-

tured a much higher 13C-enrichment, 50%, with evident incorpora-

tion of 13C in the acyl chains. Similar trends were observed for the

other representatives of the two types (Fig EV4), with the excep-

tion of OVCAR5 that showed a higher enrichment similar to type 2

cell lines. Increased 13C-enrichment indicates potential higher de

novo fatty acid biosynthesis. If lipogenesis is affected, similar

trends should be observable across lipid classes. Indeed, higher
13C-content was observed in 15 abundant lipids from all lipid

classes (Fig 5E), and the difference was significant for 11 out of 15

(P-value < 0.05, Wilcoxon–Mann–Whitney test). In the data related

to the second tracer [U-13C]glutamine, the labeling enrichment was

lower, in the range of 10–20% (Appendix Fig S6). We observed a

small but opposite trend with increased 13C in type 1 for 5 of the

15 tested lipids which could reflect a marginal difference in the
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fraction of citrate that originates from glutamine and provides

acetyl-CoA monomers to lipogenesis. In conclusion, we observed

higher activity in de novo lipid synthesis (from the main carbon

source glucose) in type 2 cells, which was not coupled to higher

lipid content. The remaining fraction of nonlabeled lipids resulted

from other carbon sources, which could be from direct lipid

uptake.

Main metabolic types have distinct genes and drug sensitivity

To functionally validate the pathway scores, we evaluated if the

inferred metabolic types were associated to differences in sensi-

tivity to genetic or pharmacological inhibition. We used the

dependency data from a CRISPR knockout screen of 18,333 genes

(Tsherniak et al, 2017), for which 63 cell lines overlap with the

two types. We found that active pathways were more sensitive

in one type versus the other. For example, in upper glycolysis

we found that phosphoglucomutase 3 (PGM3) and phosphoglyc-

erate mutase 1 (PGAM1) deletion had stronger effect in type 1

(Student t-test P-value < 0.05 and P-value < 0.01, respectively;

Fig 6A and B). Indeed, PGAM1 knockout has a deleterious effect

in both types. However, we observed that the effect was signifi-

cantly more pronounced for type 1 (�1 vs �0.8 in type 2, Stu-

dent t-test P-value < 0.01) and close to the median value of

essential genes (Tsherniak et al, 2017). These two results corrob-

orated from a functional standpoint the association of type 1 to

higher sugar metabolism activity. Inversely, the sensitivity to

gene knockout shifted between types in the TCA cycle. For exam-

ple, knockout of isocitrate dehydrogenase 2 mitochondrial (IDH2)

or succinate dehydrogenase assembly factor 4 mitochondrial

(SDHAF4) affected the growth of type 2 cells (P-value < 0.01)

more than type 1.
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Figure 4. Differential pathway utilization inferred by 13C labeling analysis.

A Schematic representation of fractional difference, difference between each metabolite fractional contribution (percentage of 13C labeled) subtracted between type 1
and type 2. The metabolites are ranked by their fractional difference, where positive values are associated with higher labeling in type 1 and negative values with
higher labeling in type 2. The bar plot bellow indicates the position of metabolites of TCA cycle, where seven metabolites out of 11 were more labeled in type 2.

B Metabolic pathways enrichment computed using metabolites fractional differences. Pathways associated to higher labeling in type 1 are displayed in blue and in type
2 in red (cell lines n = 9 with three biological replicates, hypergeometric test corrected for FDR). Results of labeling experiment using [U-13C]glucose or [U-13C]glu-
tamine denoted on top of heatmap.
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We extended the analysis from single reactions to whole path-

ways. We ranked all 18,333 genes on their correlation with the two

types and performed gene set enrichment analysis to identify path-

ways that include genes whose knockout lead to differential effects.

The top pathways associated with type 1 were linked to sugar

metabolism (Fig 6C). More strikingly, the pathways whose knock-

out caused frequently a growth defect in type 2 were oxidative phos-

phorylation (q-value = 0, Appendix Fig S7A) and biosynthesis of

unsaturated fatty acid (q-value < 0.05, Appendix Fig S7B). These

are in line with the higher activity predicted by pathway score and
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Figure 5. Differences in lipid content and de novo biosynthesis between metabolic types.

A Comparison of lipid species’ relative abundance between type 1 and 2, sorted by lipid class. Statistically significant lipids are identified by solid colors (adjusted
P < 0.05, cell lines n = 7 with three biological replicates per cell line and two technical replicates, two-sided unpaired student t-test, corrected for FDR).

B Comparison of total lipid content, with mean sum of lipid class � standard error (cell lines n = 7 with three biological replicates per cell line and two technical
replicates, two-sided unpaired student t-test).

C Comparison of total content in individual lipid class, with number of lipids measured by class in title. Lipids class linked to mitochondria identified with the schema
of the organelle (cell lines n = 7 with three biological replicates per cell line and two technical replicates, boxplot depicts first quartile, median, and third quartile,
two-sided unpaired student t-test). ns: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

D Mass distribution vector of TAG 50:1 labeled from [U-13C]glucose of two breast cancer cell line, HS578T, type 1, and T47D, type 2 (three biological replicates per cell
line and two technical replicates, mean � standard deviation).

E Bar plot (mean � standard deviation) of fractional contribution from [U-13C]glucose of most abundant lipids per lipid class (cell lines n = 9 with three biological repli-
cates per cell line and two technical replicates, Wilcoxon–Mann–Whitney test). ns: P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Abbreviation: hexosyl-
ceramide (HexCer), sphingomyelin (SM), cardiolipins (CL), phosphatidylcholines (PC), lysophosphatidylcholines (LPC), ether phosphatidylcholines (ether PC), phos-
phatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), phosphatidylserine (PS), phosphatidylglycerols (PG), and triacylglycerols (TAG).
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verified by 13C-experiments in the TCA cycle and de novo lipogene-

sis (e.g., PC 34:5e in Fig 5E), respectively. The differentiating rele-

vance of unsaturated fatty acids was confirmed by drug sensitivity

data (Corsello et al, 2020). Type 2 cells were more susceptible to

inhibition of stearoyl-CoA desaturase (SCD), a major contributor for

biosynthesis of unsaturated fatty acids (Fig 6D). In summary, we

demonstrated that pathway scores and clustering derived from

metabolomics data can translate into dependency for cancer cell

lines and sensitivity to genetic or pharmacological inhibition. In type

2, the importance of mitochondrial pathways was highlighted by

oxidative phosphorylation dependency and the sensitivity to unsatu-

rated fatty acid biosynthesis was confirmed as a therapeutic liability

for these cancers.

Discussion

We used a systematic approach to investigate the metabolic repro-

gramming in 180 cancer cell lines grown in vitro in comparable and

controlled conditions. Starting from semiquantitative data for 1,809

putative deprotonated metabolites profiled by untargeted metabolo-

mics, we estimated activity scores for 49 pathways by principal

component analysis. Unsupervised clustering of cell lines based on

pathway scores revealed two main groups, pointing to convergence

of metabolic phenotypes. The emergence of only a few overarching

groups was unexpected and, therefore, we further characterized the

two major cell line metabolic types by computational and experi-

mental means. The two metabolic types differ in pathway usage.

Type 1 has enhanced carbohydrate metabolism, and type 2 relies on

mitochondrial pathways, amino acid metabolism, and lipogenesis.

The activity of these pathways was confirmed by isotopic labeling,

and their central role was confirmed by a knockout fitness screen.

Our results are coherent with the subtypes identified by Daemen

et al (2015) in pancreatic ductal adenocarcinomas but generalizable

to all cancer lineages and a multitude of pathways in primary and

lipid metabolism.

Building on the insights from the first large-scale intracellular

metabolomics study on cancer cell lines (Li et al, 2019a), we

expanded their work by taking a completely different approach to

data analysis. Rather than focusing on how single genetic perturba-

tions affect single metabolites, which is covered by Shorthouse

et al (2022), we have inferred pathway activity for each cell line to

unravel metabolic changes at the level of the whole metabolic net-

work. This novel computational approach, which has also been pro-

posed for the analysis of transcriptomics (Segura-Lepe et al, 2019),

combined with our wider metabolite coverage has enabled the iden-

tification of global cancer metabolic phenotypes, for which we have

confirmed their functional relevance by orthogonal methods.

The integration of global metabolic phenotypes to all available

traits allows for the identification of possible metabolic drivers of
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Figure 6. Sensitivity to genetic and pharmacological inhibition between metabolic types.

A Schematic representation of pathways depicting analyzed reactions. Gene effect (CERES score (Meyers et al, 2017)) estimate gene-dependency levels from CRISPR-
Cas9 knock-out screens on cell line’s growth and is scale so that the median score of common essentials genes is �1.
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D Growth response to drug MK-8245, which targets SCD, stearoyl-CoA desaturase, from the unsaturated fatty acids biosynthesis pathway.
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****P < 0.0001.
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the phenotype. Our analysis revealed many putative drivers of the

major metabolic types, that is HIF1A, TGFb, and the EMT status.

Their role in regulating part of metabolism is well-established

(Semenza, 2012; Hua et al, 2019; Georgakopoulos-Soares et al,

2020), but our work highlights how they dominate over other regu-

latory axes. Moreover, the association between pathway activity

and regulators might also reflect reversed causality, which could

point to metabolites modulating a regulator (Jia et al, 2021). This

could be the case, for the amino sugar pathway that was found to

be more active in type 1. Its main product, UDP-acetylglucosamine,

is known to affect glycosylation and, in turn, EMT (Akella

et al, 2019). Therefore, the metabolite change might act upstream of

EMT, and not vice versa. Further analyses would be required to ver-

ify causality of these relations as the cause-and-effect relationship

between EMT and metabolic reprogramming remains elusive (see

review by Jia et al (2021)). Interestingly, the association of the types

with EMT shows a much greater interaction and interconnectedness

between malignant factors and global metabolic reprogramming

(Georgakopoulos-Soares et al, 2020), identifying relation outside of

previously well-studied pathways. This greater EMT-metabolism

relation was not unexpected as changing motility phenotypes would

necessitate altered bioenergetics and, thereby, extensive alteration

in metabolism (Jia et al, 2021). Interestingly, a study of 949 cancer

cell lines has also reported the dominant role of EMT in explaining

proteome variability (Gonçalves et al, 2022).

What has yet to be explored are the principles that drive these

cancer cells to adopt different metabolic program. These could be

associated to specific limitations that cancer cells have to bypass to

support their development and transformation, such as adaptation

to hypoxia, or to solve whole-cell challenges of efficient energy pro-

duction or proteome allocation (Basan et al, 2015). Because of the

overwhelming result linking type 2 to aerobic pathways (TCA cycle,

oxidative phosphorylation, unsaturated fatty acids, etc.), we hypoth-

esize that oxygen play a major role in shaping the metabolic pheno-

type. Even though cells were grown under the same normoxic

condition, hysteresis due to past oxygen availability could explain

these phenotypes. In fact, type 1 cells are characterized by ubiqui-

tous changes that characteristic of hypoxia: activation of HIF1 tar-

gets, inhibition of mitochondrial pathways, and increase in lipid

uptake, which has been shown to be beneficial against hypoxic

stress (Kamphorst et al, 2013). Type 2 cells, in contrast, maintain

membrane fluidity by producing de novo unsaturated fatty acids

fueled by the TCA cycle. Moreover, the differences in these aerobic

pathway usages could be explained by impaired mitochondria. In

fact, type 1 cells had less mitochondrial lipids, less activity in mito-

chondrial pathways, and were less dependent on respiration. Future

work should verify causality, that is, whether mitochondrial dys-

functions, the loss of mitochondrial mass, or stabilization of HIF1

are sufficient to drive shift type 2 cells to type 1.

Materials and Methods

Cell Culture

A total of 182 cell lines were obtained and grown in seven distinct

batches over the period of several months. To minimize the effect of

the environment, all cell lines were adapted to growth in the same

media by maintaining them in culture for at least 2 weeks. Cells

were cultured in RPMI 1640 Phenol Red Free (Sigma #R7059) with

2 mM L-glutamine (Sigma #G7513, Lot #RNBD0904) freshly added.

The medium was supplemented with 10% fetal calf serum (PAA

Laboratories, Linz, Austria, #A15-701, Lot #A30111-3524) and is

referred hereafter as RPMI, 10% FCS, L-glutamine. Cell lines were

grown at 37°C with 5% CO2. Each cell line was seeded into 3 wells

of 6-well plates and grown for 48 h. Cell lines were maintained

according to standard protocols, their identity verified via STR

sequencing and tested for mycoplasma infections. All adherent cells

were grown to reach similar confluency. The cut-off values for

adherent cell lines are a minimum of 50%, and a maximum of 80%

confluency. For mixed suspension/adherent lines, they were judged

on a case-by-case basis, and the minimum confluency as it does not

reflect direct cell density set at 35%. For suspension cells, after

48 h, cell culture counts were accessed in the count plate on an

automated cell counter (Cedex, by Roche, Basel, Switzerland). As

there was little or no growth lag after splitting the culture, we calcu-

lated growth rates from recent counts and seeded accordingly. The

final density was at the upper end of the exponential phase of

growth.

Metabolite extraction

At 48 h, the medium was removed via aspiration, and cells were

washed twice with a wash solution (75 mM Ammonium Carbonate,

adjusted to pH 7.4 with Acetic Acid). Metabolites were quenched by

dipping the bottom of the plate in liquid nitrogen for 1 min. Metabo-

lites were extracted using a 40% methanol, 40% acetonitrile, and

20% water solvent. The plate was sealed and incubated at �20°C

for 10 min. Extracted cells were scraped off the bottom of each well

using a pipet with wide-bore tips. Next, the cell extracts were trans-

ferred to 96-well plates with conical bottom and centrifuged at 4°C,

2,800 rpm for 30 min to separate cell debris. The cleared super-

natants were injected for mass spectrometric analysis.

Untargeted metabolomics

Untargeted metabolite profiling was performed using flow injection

analysis on an Agilent 6550 QTOF instrument (Agilent, Santa Clara,

CA) using negative ionization, 4 GHz high resolution acquisition,

and scanning in MS1 mode between m/z 50 and 1,000 at 1.4 Hz

(Fuhrer et al, 2011). The solvent was 60:40 isopropanol:water sup-

plemented with 1 mM NH4F at pH 9.0, as well as 10 nM hexakis

(1H, 1H, 3H-tetrafluoropropoxy)phosphazine and 80 nM taurochlo-

ric acid for online mass calibration. The seven batches were ana-

lyzed sequentially. Within each batch, the injection sequence was

randomized. Data were acquired in profile mode, centroided and

analyzed with Matlab (The Mathworks, Natick). Missing values

were filled by recursion in the raw data. Upon identification of con-

sensus centroids across all samples, ions were putatively annotated

by accurate mass and isotopic patterns. Starting from the HMDB

v3.0 database (Wishart et al, 2013), we generated a list of expected

ions including deprotonated, fluorinated, and all major adducts

found under these conditions. All formulas matching the measured

mass within a mass tolerance of 0.001 Da were enumerated. As this

method does not employ chromatographic separation or in-depth

MS2 characterization, it is not possible to distinguish between
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compounds with identical molecular formula. The confidence of

annotation reflects Level 4 but—in practice—in the case of interme-

diates of primary metabolism, it is higher because they are the most

abundant metabolites in cells. The resulting data matrix included

1,809 ions that could be matched to deprotonated metabolites listed

in HMDB v3.0. All m/z peaks that remained unmatched or were

associated to adducts or heavy isotopomers were discarded.

Data normalization

As first-line quality control for each measurement, we computed the

sum of all intensities (TIC) of each injection. If extremely low or

high, the TIC is a sign of problems in the sample preparation, injec-

tions, or measurement. Out of the 1,387 injections, 68 exhibited

abnormal TIC and were removed. These included all six replicates

of PC14PE6 and NCIH446. Out of the initial 182 cell lines included

in the screen, we were left with data for 180. Large-scale untargeted

metabolomics experiments are subject to various factors that intro-

duce unwanted effects on data: batch effects of sampling and analy-

sis, drifts in measurements, accumulation of dirt, drops in

instrument sensitivity, etc. To address these potential issues, we

tested numerous normalization methods. To assess the efficacy of

each method, we adopted quantitative measures of reproducibility.

The fundament of the reproducibility analysis was the inclusion

of the two cell lines as quality controls (QC): MCF7 and MDAMB321

in each of the seven growth batches. Because of sequential analysis

of batches, representatives of both cell lines were distributed over

the entire injection sequence. The expectation was that all repeated

measurements of either MCF7 or MDAMB321 had to be similar, and

differences between MCF7 and MDAMB321 had to be preserved

across the seven batches. The reproducibility metrics included the

following criteria:

• Batch Scoring Fold Change (FC): calculated as the mean fold-

change between random subsets of MCF7 cell line measurements.

Out of the 66 replicate measurements for this cell lines across all

batches, we randomly sampled two sets of 6 samples, calculated

the mean intensities for each set and, in turn, the fold-change for

each of the 1,809 metabolites ions. Sampling was repeated 1,000

times. From the distribution of all fold-changes, we calculated the

Batch Scoring FC as the threshold that corresponds to the 5% false

discovery rate. Ideally, Batch Scoring FC between replicates of the

same cell line should be zero. Normalization improves repro-

ducibility if the threshold value decreases.

• FC Reproducibility: for each batch, we calculated the fold-change

for all 1,809 metabolite ions between the MCF7 and MDAMB321

replicates. We calculated the mean Euclidean distance between the

fold-changes of all seven batches. Normalization improves repro-

ducibility if the distance between fold-changes across batches

decreases.

• FC Reproducibility amino acids (AA): for each batch, we calculated

the fold-change between the MCF7 and MDAMB321 replicates for

ions feature matching to AA. We calculated the mean Euclidean

distance between the fold-changes of all seven batches. Normaliza-

tion improves reproducibility if the distance between fold-changes

decreases.

• Interbatch Distance: we adopted the metric defined by Wehrens

et al (2016). It applies principal component analysis and computes

the how overlapping are the batches the Bhattacharyya distance.

Normalization improves reproducibility if the distance decreases.
• Kolmogorov–Smirnov: we tested for all ions whether MCF7 sam-

ples from different batches were on the same distribution. A two-

sample Kolmogorov–Smirnov was used to test for this batch effect.

We counted the frequency of tests that revealed batch effects, by

counting the number of tests significant (P-value < 0.05) on the

total number of tests done.

The five criteria were scaled to the not normalized data (value of

1), where 1 denotes no amelioration of reproductivity and values

bellow 1 improved the reproducibility.

We tested 15 state-of-the-art normalization methods. Conceptu-

ally, these methods can be divided into three different classes:

1 Batch Effect: Methods that correct for user-defined batches. In our

case, we used the seven experimental batches. We tested two

implementations of Remove Unwanted Variation (RUV) method

(Risso et al, 2014) and the empirical Bayes method ComBat (John-

son et al, 2007). In some cases, MDAMB321 samples were

selected as QC samples used for correction.

2 Signal Drift: Methods that correct for signal drifts that occur

chronologically during the injection sequence. The drifts might be

caused by smooth changes in solvents, the ionization source, ion

optics, or the detection process. We used three methods that con-

sider the injection sequence to detect temporal drifts and correct

after smooth interpolation. First, we implemented a method that

applies a moving median (window 120 min) to all measured sam-

ples to estimate a robust trendline. Second, we used a locally

weighted regression (LOESS; Cleveland & Devlin, 1988) and its

derivate for temporal trends (Robust LOESS; Cleveland, 1979),

and third, we used the QC-based support vector regression

method (QC-SVR; Kuligowski et al, 2015). In the latter case, the

MDAMB321 samples and the plate order were selected as QC

samples to be used for correction.

3 Sample Variance: Due to differences in cell amount, sampling,

pipetting errors, injection errors, etc. variations can occur in

single samples. To correct for such issues, we tested normaliza-

tion using quantiles (Quantile), log10-mean (Mean), median

(Median), standard deviation (Std), median absolute deviation

(Mad), the sum of all ions (TIC), probabilistic quotient (PQN),

and scaling with cellular confluency at the time of sampling

(Confluency).

These methods were tested singularly and in reasonable combi-

nations (Combo). Given that the three classes tackle different types

of problems, we have combined different methods from the different

classes. The choice of methods and the order of combinations was

based on their improvement of quality metric scores. Results and

quality score are reported in Table EV1.

Metabolic pathway definition

A common issue using pathways is that their definition can be

arbitrary, that is the start and end of a pathway is dependent on

the database. Kyoto Encyclopedia Genes and Genomes (KEGG;

Kanehisa & Goto, 2000), the chosen database because of its high

curation, has the disadvantage of defining substantially

© 2022 The Authors Molecular Systems Biology 18: e11033 | 2022 11 of 15
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overlapping pathways. We circumvented this limitation by remov-

ing reactions, and their corresponding substrate or product, which

were present in multiple metabolic pathways. This curation

resulted in a smaller pathway definition with less overlapping

reactions, and thus resulting in metabolites more specific to a

pathway. Out of the 1,809 putatively annotated ions, 367 could

be linked to KEGG pathways. As in many cases, the measurement

does not allow to distinguish between structural isomers, ion

could match to one or multiple metabolites with the same for-

mula. In total, the 367 deprotonated ions matched to 530 metabo-

lites which are part of KEGG metabolic pathways.

Pathway activity scoring

Our goal is to infer flux changes from relative metabolite abun-

dances, one pathway at the time. At the biochemical level, the

relation between metabolites and fluxes is governed by enzyme

kinetics and capacity. If pathway flux change, we expect all inter-

mediate concentrations to shift in a coherent direction. In some

cases, metabolite changes may only be subtle, depending on

enzyme saturation and the additional regulatory mechanisms. In

general, coherent and distributed changes of pathway metabolites

indicate an underlying flux change. In contrast, strong but local

metabolite changes reflect pathway interruption (Fuhrer

et al, 2017) or changes in enzyme kinetics or abundance that are

compensated by a modulation of the reactants but do not influ-

ence pathway flux (Fendt et al, 2010). Hence, we sought to

quantify ubiquitous and coordinated changes in multiple metabo-

lites within each pathway. This was done by principal compo-

nent analysis (PCA). PCA identifies components which best

capture metabolite variance. As we are interested in the major

metabolite effect, we focused on the first principal component

(PC1) and used the PC1 scores as proxy of pathway activity. The

same principle has been adopted in the past for the analysis of

transcriptomics data (Segura-Lepe et al, 2019). To verify the

validity of the method in the case of metabolomics, we used a

published dataset by Hackett et al (2016), which offered both

metabolomics and measured fluxes for multiple conditions with

sufficiently diverse flux distributions (Fig EV1). For representative

pathways, we correlated PC1 scores and measured fluxes. Strong

positive correlation is observed between the glycolytic and pen-

tose phosphate metabolites summarized in PC1 and the fluxes of

these pathways. To be noted, the direction of the pathway activ-

ity score can be reverse, for example, in the case of the purine

pathway in Fig EV1C, where a high score denotes low flux.

Overall, the PC1 scores correlated favorably with fluxes in all

cases tested.

Inference of pathway score in cancer cell lines

Metabolomics data were mapped onto curated KEGG pathways,

where only pathways with a minimum of four measured metabolic

ions with unique m/z were considered for further analyzed. Regard-

less of the number of detectable metabolites, the relative pathway

activity score for each cell line replicate was obtained by PCA. For

each cell line, we averaged the 6 independent scores to assess the

pathway activity score. Final scores were scaled to [�1. . .1] for

comparison across pathways.

Metabolic typing and omics association analysis

Metabolic types were identified using hierarchical clustering using

Ward’s method of pathway scores.

The resulting hierarchical clustering tree of the cell lines was

used for omics association analysis, where association over the tree

were computed by iterating through all branches of the tree with at

least 18 cell lines (10% of the total number). For categorical traits

(e.g., batch number or genomic data), we used a hypergeometric

test to evaluated if a trait was over-represented in a branch. For con-

tinuous traits (e.g., gene expression), we used a Student two-tailed

t-tests to identify if a trait was over or under expressed in a branch.

We assembled all (1,025,576) resulting P-values and corrected in

toto for false discovery rate by the Storey and Tibshirani method to

produce q-values (Storey & Tibshirani, 2003).

Selection of cell lines for follow ups

We chose 9 cells from type 1 and type 2 for further evaluation

(Table EV3). These cell lines were selected to span diverse lineages

and growth rates. To show differences in metabolism across the

same lineage, we selected pairs of ovarian cell lines (OVCAR3 and

OVCAR5) and of breast cell lines (T47D and HS578T) belonging to

different types. To confirm that the metabolic types are not associ-

ated with growth rate, we selected cell lines with doubling time

spanning from 17 to 53 h and mixed type. Cell lines were obtained

from the National Cancer Institute (NCI, Bethesda, MD, USA). After

thawing, the cell lines were expanded in cell culture flasks (Nunc

T75, Thermo Scientific) at 37°C and 5% CO2 in RPMI-1640 (Biologi-

cal Industries, cat.no. 01-101-1A) supplemented with 5% fetal

bovine serum (FBS, Sigma Aldrich, cat.no. F6178), 2 mM of L-

glutamine (Gibco, cat.no. 25030024), 2 g/l of D-glucose (Sigma

Aldrich, cat.no. G8644), and 100 U/ml of penicillin/streptomycin

(P/S, Gibco, cat.no. 15140122).

Cell imaging and image analysis

Cell lines were fixed with 10% formalin (Sigma-Aldrich #F8775) for

10 min at room temperature. After fixation, cells were permeabi-

lized and unspecific antibody binding was blocked by incubating

them with a 10 mg/ml of bovine serum albumin (BSA) solution

containing 0.01% (v/v) Triton-X100 (Sigma-Aldrich #T8787) and

10 lg/ml of DAPI (BioLegend #422801) for 30 min at room temper-

ature. Cells were then stained in blocking solution (1 mg/ml BSA in

PBS) overnight at 4°C with the following antibodies: AlexaFluor�

488 anti-Vimentin (1:1,000, Biolegend, #677809), AlexaFluor� E-

cadherin (1:200, clone 36/E-cadherin, BD #560062), and DAPI

(10 mg/ml, 1:1,000, Sigma Aldrich). High-content imaging was per-

formed with an Opera Phenix automated spinning-disk confocal

microscope at 40× magnification (Perkin Elmer, HH14000000). To

measure cell area shape features, single cells were segmented using

CellProfiler 2.2.0 (McQuin et al, 2018). Nuclei segmentation relied

on the DAPI channel. CellProfiler module “DetectPrimaryObject”

was used to identify the nuclei and “DetectSecondaryObject” was

used to derive the intensity of the marker in the area around the

nucleus. For each cell, nine images from nine biological replicates

were segmented, which cumulated into 10,273 segmented cells. Sta-

tistical significance was assessed by Student’s t-test.
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13C labeling experiments

After two passages, FBS in the growth medium was replaced by dia-

lyzed FBS with a reduced content of low molecular weight com-

pounds (dFBS, Sigma Aldrich, cat.no. F0392). Three replicates of

each cell line were grown for 48 h in either growth medium with

either [U-13C] glucose (Sigma-Aldrich, cat.no. 389374), [U-13C] glu-

tamine (Cambridge Isotope Laboratories, cat.no. CLM-1822-H-PK),

or naturally labeled growth medium. At 48 h, we extracted metabo-

lites as described and analyzed on Agilent 6546 Q-TOF instrument

(Agilent, Santa Clara, CA). Mass spectra were recorded from 50 to

1,050 m/z in 4 GHz HighRes, negative ionization mode. Annotation

was done by matching the measured mass of the ions with reference

compounds derived from the Human Metabolome Database (HMDB

4.0), taking labeling patterns of potential metabolites into considera-

tion. For each measured metabolite, mass distribution vector and

fractional contribution have been computed using formulas

described in the following review (Buescher et al, 2015).

Lipidomics

Cells were grown in the same three conditions as above: naturally

labeled, [U-13C] glucose, and [U-13C] glutamine medium. At 48 h,

internal standard (EquiSPLASH, Avanti Polar Lipids, cat.no.

330731) was added to all cell lines to enable the quantification of

lipid species. Lipid extraction was performed using 50:50 (v/v)

methanol/isopropanol for 1 h at �20°C. Untargeted lipidomics was

performed by LC–MS on a Thermo Fisher Q-Exactive HF-X mass

spectrometer (Thermo, Massachusetts, United States). For liquid

chromatography, we used a 30 mm Waters ACQUITY UPLC BEH

C18 column (cat. no. 186002352) and a 7 min gradient from 15%

buffer B (90% (v/v) isopropanol, 10% acetonitrile, 10 mM of

ammonium acetate) and 85% buffer A (60% acetonitrile, 50%

water, 10 mM of ammonium acetate) to 99% Buffer B. Mass spectra

were recorded from 150 to 2,000 m/z in positive ionization mode,

recording MS1 and MS2 (DDA, top 5 ions) spectra. Lipidomics data

processing for nonlabeled samples was done using Compound Dis-

coverer 3.1 (Thermo, Massachusetts, United States). Lipids were

annotated with MS2 information. Lipids from each class were quan-

tified using class-specific internal standards.

For labeled lipids, we adopted a targeted data extraction. The

most abundant representatives for each lipid class were selected in

naturally labeled samples. All 13C-isotopomer traces were extracted

as ion chromatograms from labeled samples based on accurate mass

and retention time. Related mass isotopomers were integrated with

identical boundaries and normalized to unity to obtain labeling frac-

tions.

Gene dependency and drug response analysis

Gene dependencies were obtained from Tsherniak et al (2017) and

the response from Corsello et al (2020). Gene set enrichment was

performed using GSEA (https://www.gsea-msigdb.org/gsea/index.

jsp) leading-edge analysis (Subramanian et al, 2005) by correlating

gene dependency score to the two types. Gene sets were taken from

the curated KEGG pathways described above. We used 1,000 per-

mutations of the gene-level values to calculate normalized enrich-

ment scores and statistical significance. GSEA results display the

enrichment score normalized to mean enrichment of random sam-

ples of the same size.

Data availability

Raw metabolomics files of the 180 cancer cell lines can be accessed

from the Massive database (https://massive.ucsd.edu/ProteoSAFe/

dataset.jsp?accession=MSV000087155). Data tables and raw files of

follow up experiments are available at https://doi.org/10.3929/

ethz-b-000511784. Code is available at https://github.com/

zamboni-lab/CCL180-analysis.

Expanded View for this article is available online.
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