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Molecular and functional landscape of
malignant serous effusions for precision
oncology
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Sohyon Lee1, FabianArnold4, Valentina Cappelletti1, Aaron Fehr 1, Paola Picotti1,
Konstantin J. Dedes5, Daniel Franzen6, Daniela Lenggenhager 4, Peter K. Bode4,
Martin Zoche 4, Holger Moch 3,4,7,11, Christian Britschgi2,3,9,11 &
Berend Snijder 1,3,8,11

Personalized treatment for patients with advanced solid tumors critically
depends on the deep characterization of tumor cells from patient biopsies.
Here, we comprehensively characterize a pan-cancer cohort of 150 malignant
serous effusion (MSE) samples at the cellular, molecular, and functional level.
We find that MSE-derived cancer cells retain the genomic and transcriptomic
profiles of their corresponding primary tumors, validating their use as a
patient-relevant model system for solid tumor biology. Integrative analyses
reveal that baseline gene expression patterns relate to global ex vivo drug
sensitivity, while high-throughput drug-induced transcriptional changes in
MSE samples are indicative of drug mode of action and acquired treatment
resistance. A case study exemplifies the added value of multi-modal MSE
profiling for patients who lack genetically stratified treatment options. In
summary, our study provides a functional multi-omics view on a pan-cancer
solid tumor cohort and underlines the feasibility and utility of MSE-based
precision oncology.

Improved understanding of tumor biology and increasingly persona-
lized treatment has led to significant improvements in the prognosis of
cancer patients1,2. Tailoring drugs to specific genomic alterations
enables patient stratification and informs further drug development3,4.
For example, a variety of successful targeted therapies with associated
companion diagnostic tests exist across various disease types,
including treatments for HER2-positive breast cancers5–7, BRAF V600E
mutated melanoma8–11, and EGFR mutated non-small cell lung cancer
(NSCLC)12–15. However, several studiesmatching treatments to patients

based on genomic alterations alone have reported limited clinical
benefit16–18. This observation may result from two challenges: First, a
significant fraction of tumors do not harbor any actionable driver
mutations, and second, these studies focused on recurrent and heavily
pretreated disease, where tumors often develop a complex landscape
of secondary mutations leading to treatment resistance. By focusing
on earlier treatment lines and applying more sophisticated treatment
matching algorithms, other studies have demonstrated a clinical
benefit of genomics-based precision medicine19–21.
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Tumor biology, as well as the resulting drug resistance and sen-
sitivity patterns, are increasingly understood to result from the inter-
play between different layers of regulation. These include epigenetic
modifications, changes in gene expression and protein abundance,
and rewiring of signaling and metabolic pathways. Multi-omics and
functional approaches thus complement genomics-based precision
medicine and have the potential to uncover composite biomarkers to
improve patient stratification22–28.

However, the opportunities for comprehensive functional and
molecular tumor profiling are limited to the availability of (viable)
tumor material, often only accessible by invasive biopsy or surgical
procedures. Malignant serous effusion (MSE) occurs in ~15% of
advanced malignancies from a variety of solid tumor types, including
those with the highest prevalence and mortality, i.e., lung, breast, and
gastrointestinal cancers. MSE are characterized by the presence of
disseminated tumor cells in fluid accumulations in serous cavities29.
Since they can be accessed with minimally invasive procedures and
containmetastatic cells that are adapted to growth in suspension,MSE
might present an attractive alternative source of tumor material for
functional andmolecular profiling30. In addition, unlike rare circulating
tumor cells in peripheral blood31, malignant cells in MSE are often
highly abundant. Indeed, some studies reported the preliminary fea-
sibility of using MSE in clinical decision-making based on targeted
next-generation sequencing (NGS)32–34. In addition, MSE has been used
to establish patient-derived cultures35–41 or organoids42–44 for drug
response testing. However, the majority of these studies focused on
demonstrating the feasibility of a small number of samples and tested
drugs. Comprehensive molecular and functional characterization of
primaryMSE samples and integrative analyses are lacking. It, therefore,
remains unclear towhat extentMSE recapitulates the characteristicsof
the primary tumor beyond genomics and if multi-modal MSE profiling
can inform precision oncology strategies.

Results
A cohort of diverse malignant serous effusions
To characterize MSE samples of advanced solid tumors for precision
oncology, we analyzed their molecular, cellular, and drug response
landscape. We collected 261 MSE samples from 183 patients with a
metastatic solid malignancy of any type. We included those 150 sam-
ples from 105 patients, which contained sufficient numbers of viable
tumor cells for further profiling (see Supplementary Data 1). To cap-
ture the clinical complexity of precision oncology for metastatic solid
tumors, we included MSE samples from any primary tumor, thus
comprising a variety of disease types, sampling sites, treatment his-
tories, and driver mutations (Fig. 1a, b, Supplementary Data 1). The
majority of samples stemmed from patients with lung adenocarci-
noma (LUAD, n = 67, 37%), followed by tubo-ovarian carcinoma (OV,
n = 18, 14%) and mesothelioma (MESO, n = 14, 10%). Pleural effusion
was the most common sample type and accounted for the majority of
LUAD and MESO samples, while ascites were the main source of cells
for OV. Treatment histories ranged from newly diagnosed patients
with noprior drug exposure to recurrent diseasewith up to sevenprior
lines of systemic therapy (median: 1.0, IQR: 0.0−1.3). For 25 patients,
we collected multiple samples over time, enabling a unique assess-
ment of tumor evolution under therapy.

Single-cell ex vivo drug screening of pan-cancer MSE samples
We analyzed each sample by pharmacoscopy (PCY)26,45–47, measuring
sample composition and high-throughput drug responses by immu-
nofluorescence and automated confocal microscopy, after 24 hours of
ex vivo culturing (Fig. 1c, Supplementary Data 2). Image analysis
combined conventional single-cell image analysis with deep learning-
based cell classification. Specifically, we developed sequentially nested
convolutional neural networks (CNN) that recognize cell types and
states based on a combination of morphology and

immunofluorescence staining. This enabled the classification of 250
million imaged MSE cells into four main cell types: malignant cells,
macrophages, lymphocytes/granulocytes, and ‘other’ cells. We detec-
ted apoptotic cells by nuclear and cell morphology and further stra-
tified each main cell type into additional morphologically defined
subclasses (Supplementary Figs. 1 and 2a, Supplementary Data 3). The
performance of this CNN-based classification of cell type and state was
validated by a strong positive correlation with fractions of explicitly IF-
labeled cells in control experiments on the same MSE samples (Sup-
plementary Fig. 2b, c), and by positive correlations between tumor cell
counts measured by PCY and MSE sample-matched mutant allele fre-
quencies measured by NGS (Supplementary Fig. 2d).

We further utilized the single-cell resolution of PCY to measure
ex vivo response to a panel of 101 compounds commonly used in the
clinical management of solid tumors (Supplementary Fig. 3, Supple-
mentary Data 4, Supplementary Data 5). In our prior hemato-oncology
studies, we have used a reduction in cancer fraction (RCF) to identify
‘on-target’ drug responses, which are consistently associated with
improved clinical responses26,45–47. In the context of metastatic solid
tumors, a treatment should ideally be highly tumor-specific and highly
effective. However, such a treatmentmight not exist, and it is currently
unclear whether it is better tominimize toxicity on the benign immune
cells present inMSE or tomaximize toxicity on the cancer cells. To this
end, we quantified both the drug-induced reduction in tumor cell
numbers (RCN) independent of the drug response of benign cells, as
well as the reduction in tumor cell fraction (RCF), which incorporates
the drug response of the benign cells (Supplementary Fig. 4a, b).
Reduced tumor cell fractions were consistently associated with
reduced tumor cell numbers (Supplementary Fig. 4b). Both readouts
led to statistically significant hits (FDR <0.05) across the cohort
(Supplementary Fig. 4c) and consistent results across replicate wells in
a plate (median Pearson correlation coefficient = 0.62 for RCF and0.63
for RCN, respectively, Supplementary Fig. 4d). Further analysis showed
that the technical replicate correlations were strongly associated with
the number of significant drug effects (R2 = 0.56), and less so with the
variance within DMSO wells as an orthogonal measure of technical
reproducibility (R2 = 0.18), indicating that cases with low correlations
of the drug response replicates stemmed predominantly from the
absence of drug sensitivity rather than poor technical reproducibility
(Supplementary Fig. 4e). Interestingly, the RCF readout revealed
higher patient specificity (Supplementary Fig. 4d), possibly resulting
from inter-patient benign cell drug response differences. In summary,
PCY provided a detailed view of the sample composition both in
unperturbed control conditions and in response to drug treatment.

Compositional MSE heterogeneity drives multi-omic variance
We combined this PCY-based cellular and functional MSE character-
ization with sample-matched transcriptomics (RNA-seq, n = 131) and
targeted NGS using the FoundationOne CDx assay (324 genes, n = 98
MSE samples, n = 24 patient-matched solid tissue biopsies) (Fig. 1c,
SupplementaryData 1, SupplementaryData 6). To obtain an integrated
view of MSE biology and identify the main sources of variance in our
cohort, we applied multi-omics factor analysis (MOFA)48,49 to the
measurements we collected (Figs. 1c and 2a). Specifically, we included
PCY-based cellular sample composition in unperturbed conditions
(Supplementary Figs. 1 and 2a, SupplementaryData 3), both PCY-based
drug responsemeasures of tumor cells (RCN and RCF; Supplementary
Fig. 3, Supplementary Data 5), expression of the top 5% most variable
genes (Supplementary Fig. 5, Supplementary Data 7), and genomic
alterations of genes that were mutated in at least 10 samples (Sup-
plementary Fig. 6, Supplementary Data 8).

MOFA extracts axes of variance (factors) across multi-omic mea-
surements in a way that each factor explains as much of the total
variance as possible. Factors are associated with a set of weights spe-
cifying the contributing data types and features (Fig. 2a). Sample
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composition contributed strongly to the top two factors that
explained the greatest variance, while gene expression features were
present in all, and drug responses strongly contributed to factor 5
(Fig. 2b). In order to interpret themain sources of variability across our
cohort, we visualized the highest contributing features for each of the
top factors (Fig. 2c, Supplementary Fig. 7a, b). Factor 1 is related to
tumor content, including the fraction of cancer cells by PCY and
EPCAM gene expression, an epithelial marker commonly expressed on
carcinomacells. Consistently, factor 1was strongly anti-correlatedwith
expression of immune cell marker PTPRC (CD45) (Fig. 2d). Factor 2
related to immune composition, as it stratified samples by the types of

immune cells present, mainly driven by the content of macrophages
compared to other immune cell subsets (Supplementary Fig. 7c).

To further characterize thismain source ofMSE heterogeneity, we
clustered the cohort based on cell composition and morphology,
resulting in 8 sample groups (Fig. 2e, f): MSE samples with high tumor
content were characterized by their tumor cell growth patterns:
Adherent single cells (group 1), 2Dmulticellular colonies (group 2), 3D
spheroids (group 6) or single-cell suspensions (group 7). Lower tumor
content samples were further clustered based on their predominant
non-malignant cell type: either macrophages (group 3), lymphocytes/
granulocytes (group 5), immune cellswith the intermediate phenotype
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Fig. 1 | Functional andmolecular profiling of a pan-cancer cohort ofmalignant
serous effusions (MSE). a Circos plot visualizing key clinical parameters. Samples
taken from the same patient are connected with a gray line. For a more detailed
description of the clinical parameters, see Supplementary Data 1. b Table sum-
marizing clinical data shown in (a). Note that for the parameters “sample type” and
“number of prior treatments,” the same patient can be counted in multiple cate-
gories, and thus, the patient numbers donot necessarily add up to 105. c Schematic
representation of the molecular and functional profiling workflow. Cells were
isolated from MSE and analyzed by pharmacoscopy (PCY), an image-based single-

cell ex vivo drug response assay, which provides information on the cell type
composition of each sample, as well as cell type-specific responses to a panel of 101
anticancer drugs. We further collected matched gene expression data (bulk RNA-
seq, n = 131) and genomic alterations (FoundationOne CDx assay, n = 98 MSE
samples and 24 patient-matched solid tissue samples), whenever samples con-
tained a sufficient amount of tumor cells. For a subset of five LUAD samples, gene
expression in response todrug perturbation (DRUG-seq)wasmeasured. For further
details, please see Supplementary Figs. 1–6 and Supplementary Data 1–10.
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(‘unassigned’, group 4), or ‘others’ possibly representing benign
mesothelial cells,whichare oftenpresent inMSE (group8).Overall, the
groups were not strongly associated with either tumor or sample type.
Rather, we found that MSE sample composition was dynamic within
individual patients, even changing between sequential samples from
the same patient in the absence of any apparent change in health or
treatment status (Supplementary Fig. 8). Switching between the pre-
dominant immune cell types was the most common change (9 out of
25 sequentially biopsied patients).

MSE tumor cells molecularly recapitulate their tumor origin
Beyond tumor and immune cell composition, the next MOFA factors
(3, 4, 6, and 7) related to and accurately classified specific cancer types
(Fig. 2c, Supplementary Fig. 7d). Factor 6 captured a series of samples
from a single patient PID024 (Supplementary Fig. 7e) with an unusual
carcinoma of unknown primary, further discussed in the Supplemen-
tary case studies. Factor 3 separated LUAD and OV, factor 4 defined
MESO, and factor 7 breast cancer (BRCA). Motivated by this observa-
tion, we set out to analyze to what extent MSE-derived tumor cells
recapitulatemolecular aspects of their primary tumor.After correcting
for tumor content and batch effects, gene expression profiles of
samples with related tumor types were grouped together (Fig. 3a).
Furthermore, analysis of genes distinguishing different tumor types
retrieved known markers of the individual tumors, including those
used in routine diagnostics, such as napsin A (NAPSA) for LUAD and
paired box 8 (PAX8) forOV (Fig. 3b). Differential expression of selected
genes was confirmed both by qPCR analysis (Supplementary Fig. 9a, b)
and immunofluorescence (Supplementary Fig. 9c, d). MSE transcrip-
tional profiles clusteredwith their correspondingprimary solid tumors
in the cancer genome atlas (TCGA; Fig. 3c, Supplementary Fig. 10a, b).
Furthermore, expression profiles of matched tumor types were posi-
tively correlated (mean r =0.31) while those of unmatched tumor types
were uncorrelated (mean r = −0.04) (Supplementary Fig. 10c), andMSE
tumor types could be accurately assigned (mean accuracy 93%) by a
1-nearest neighbor classifier trained on the TCGA data (Supplementary
Fig. 10d). Together, this confirmed transcriptional similarity between
MSE and their respective solid tumors. Lastly, we compared the
genomic signatures derived from MSE to those of patient-matched
solid tumor biopsies (n = 24; Fig. 3d). Even though the solid tumor
biopsy and the MSE were sometimes months apart, the genomic sig-
natures showed very high concordance, with a significantly higher
median Jaccard coefficient (JC) of 0.97 compared to a JC of 0.8 for
samples that were not patient-matched (Fig. 3e). Specifically, 46 out of
77 (60%) of all actionable, and 5 out of 6 (83%) druggable alterations
were concordantly measured by FoundationOne CDx, with the
majority of disagreements stemming from rearrangements and CNVs
(Fig. 3f). For an additional 7 patients with druggable alterations, the
presence of such mutations was assessed in solid tissue by tests other
than FoundationOne, with concordant mutations in 6 out of 7 cases
(Fig. 3f, Supplementary Data 9), leading to a total of 11 out of 13 (85%)
concordant druggable mutations detected by any method. Taken
together, these findings suggest that although the microenvironment
differs significantly from that found in a primary tumor or solid
metastasis, malignant cells derived from MSE largely retain their
disease-specific gene expression and solid tumor-matched mutational
profile.

Drug-induced gene expression in MSE reflects mode-of-action
Given that MSE significantly retains molecular aspects of their solid
tumor origins, wenext investigated theirmolecular determinants of ex
vivo drug sensitivity. Interestingly, the MOFA analysis highlighted
overall drug sensitivity as a key source of variance, with factor
5 strongly correlating with the fraction of drugs with ‘on-target’
responses per sample (‘sensitivity score’; Fig. 4a, Supplementary
Fig. 11a). To interpret the mechanisms leading to this multi-drug

susceptibility, we applied gene set enrichment analysis (GSEA) on the
genes associated with the sensitivity score (Fig. 4b, c). This revealed
significant enrichment in genes related to DNA conformational
change, chromatin remodeling, and cell division, among those posi-
tively associated with overall drug sensitivity, suggesting a key role of
proliferation in governing the general ex vivo sensitivity of MSE to
antineoplastic agents.

Beyond overall sensitivity, we focused on the relationship
between gene expression and the response to individual drugs. As
gene expression was strongly associated with specific tumor types, we
restricted this analysis to the largest subcohort (LUAD,n = 59 samples).
We performed two complementary analyses (Fig. 4d): First, we corre-
lated the baseline transcriptional signatures with their ex vivo
response per drug, which yielded hardly any significant associations.
Thus, while overall drug resistance was associated with the expression
of cell divisiongenes, responses to individual drugswerenot explained
by baseline MSE gene expression across the LUAD cohort. Second, for
a subset of 5 LUAD samples selected based on their high tumor con-
tent, we measured the transcriptional response following 24h of
ex vivo treatment with 45 drugs (DRUG-seq50, Fig. 4d, Supplementary
Fig. 12, Supplementary Data 10). Analysis of the resulting 932 tran-
scriptional profiles of primary LUAD samples identified a considerable
number of genes significantly differentially expressed in a drug-
dependent manner across all 5 samples.

Genes whose expression relates to drug response, either at
baseline or in response to treatment, may be associated with the drug
mode-of-action (MoA). We, therefore, next investigated the enrich-
ment of the ranked gene-drug associations derived from both
approaches in the drug target-proximal gene sets. We obtained a
drug’s direct targets from the STITCH database51,52, and extended the
primary target list with reported interacting genes from the STRING
database53 (Fig. 4d). Baseline RNA-seq associations with ex vivo drug
response showed such enrichments for only 1 out of 73 drugs with
annotated drug targets. In contrast, transcriptional changes in
response to drug treatment were significantly enriched in drug target-
proximal gene sets for 22 out of 35 evaluable drugs (Fig. 4e). Gemci-
tabine, a nucleoside analog that induces DNA damage, was enriched in
both analyses (Fig. 4f). Many of the gemcitabine target-proximal genes
are related to cell division. Of these, for example, the baseline
expression of cell division cycle 20 (CDC20) was positively associated
with the ex vivo response to gemcitabine, as well as downregulated in
response to gemcitabine exposure (Fig. 4g). Among the compounds
with the most drug target-enriched transcriptional signatures were
vinorelbine, an inhibitor of tubulin polymerization54, and palbociclib, a
selective inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6). For
vinorelbine, we observed downregulation ofmultiple tubulin subunits
as well as upregulation of genes related to apoptosis, stress response
and cytokine signaling (Fig. 4h). This decrease in tubulin was further
validated at the protein level inMSE cells by immunofluorescence and
proteomics (Supplementary Fig. 13). For palbociclib, we found few
differentially expressed genes overall (n = 61, FDR <0.01 and absolute
log fold change >0.5); however, almost all of the genes downregulated
by palbociclib were related to cell cycle regulation (Fig. 4i). Taken
together, our integrative analysis highlighted a link between pro-
liferation and global drug sensitivity and revealed that, while the
expression of drug-target-proximal genes did not trivially explain
response to individual compounds, the transcriptional response to
drug perturbation in primary MSE samples was strongly linked to, and
indicative of, the drug’s mode-of-action.

Tumor spheroids associate with genomic alterations and
cellular states in LUAD
Given the heterogeneity in MSE-derived cancer cell morphologies
and multicellular organization (Fig. 2e, f), we explored their link to
clinical parameters, cellular state, and response to treatment. In the
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context of LUADs, the fraction of tumor cells that formed spheroids
showed striking differences between patient samples in identical
culture conditions. Spheroidal growth was consistent within
patients and not associated with the number of prior treatments
(Fig. 5a, b). Patients with higher spheroid fractions tended to
respond better to the treatment following the biopsy taken for this
study (Fig. 5c). This observation could, in part, be explained by an
association of spheroid formation with mutational status (Fig. 5d):
Spheroid growth was particularly abundant in EGFR-mutant LUAD,

which clinically responds well to EGFR inhibition55 (Supplementary
Discussion).

The multicellular organization changed in response to drug
treatment, where drug-induced cell death coincided with spheroid
dissociation (Fig. 5e). To understand the molecular mechanisms
underlying this observation, we integrated the DRUG-seq dataset with
spheroid abundance across ex vivo treatments. Specifically, we asso-
ciated the fraction of cells forming spheroidswith the sample-matched
transcriptional profiles across the 46 treatment conditions and five
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LUAD samples (Fig. 5f). Spheroid dissociation was associated with
increased expression of genes related to protein trafficking, motility,
and cell adhesion. In contrast, higher spheroid fractions were asso-
ciated with mitochondrial gene expression and translation, as well as
cell division and metabolism (Fig. 5g–i). Thus, MSE-based spheroidal
cell patterns indicate a metabolically active and proliferative popula-
tion of cell-cell contact-forming LUAD cells.

To test if EGFR-mutant LUAD spheroids were sensitive to EGFR
inhibition, we developed an ex vivo response score measuring the
dissociation of spheroids for samples displaying sufficient spheroidal
growth (see Methods). Out of the four EGFR inhibitors tested in our
assay, all induced spheroid dissociation in at least five samples (Sup-
plementary Fig. 14). Some patient samples responded to all inhibitors,
while others had more drug-specific response patterns not explained
by secondary EGFR mutations conferring treatment resistance. When
considering a combined readout across all inhibitors, EGFR-mutant
samples, on average, responded with spheroid dissociation, while
EGFR wild-type samples did not (Fig. 5j), implicating EGFR signaling in
this ex vivo tumor behavior.

Multi-omics MSE profiling reveals acquired resistance mechan-
isms in BRAF V600E mutant LUAD
Acquired resistance to targeted therapy is one of the main challenges
in the treatment of patientswith advanced solid tumors. IfMSE reflects
tumor evolution on an individual basis, sequential sampling across a
patient’s disease coursemay provide unique insights into the acquired
resistance mechanisms. To this end, we focused on the six MSE sam-
ples from patient PID028, a 64-year-old male with a BRAF p.V600E
mutant LUAD, whose samples spanned from diagnosis to death
(Fig. 6a; further detailed in Supplementary case study PID028).

All samples had a high content of tumor cells, which adhered to
the plate either as single cells or small colonies (Fig. 6b). The immune
composition was dynamic over time, e.g., switching from pre-
dominant macrophages (sample FB261) to lymphocytes (sample
FB263) in the span of just one week. The core mutational landscape
was stable over time, with the maintenance of the majority of
alterations, including BRAF p.V600E (Fig. 6c). However, compared to
the sample taken at diagnosis, the relapsed samples acquired a loss
of function substitution in TP53, as well as mutations possibly
affecting mitogen-activated protein kinase (MAPK) signaling: A
truncation in ERRFI1, which encodes a negative feedback regulator of
ERBB family receptor tyrosine kinases; A substitution affecting a
splice site in MKNK1, which encodes MAPK Interacting Serine/
Threonine Kinase 1; And, a splice site deletion in NF1 observed in one
of the two samples taken after relapse.

The ex vivodrug responses over timehighlighted initial sensitivity
to combined BRAF and MEK inhibition, with increasing resistance
(Fig. 6d),matching the clinical course of the patient. We confirmed the
dabrafenib + trametinib resistance across multiple concentrations in
FB215, with neither a relative nor absolute reduction in tumor cells

observed (Fig. 6e). However,measuring phospho-ERK (pERK) levels by
immunofluorescence in these conditions as a readout for MAPK
pathway activity revealed a strong drug-induced reduction in pERK-
high cells (Fig. 6f). Thus, in this patient, the acquired resistance to
MAPK inhibitionwas independent of the treatment-induced reduction
in pERK signaling.

To understand themolecular changes underlying this acquired
resistance, we compared the transcriptional signatures of FACS-
purified (EpCAM positive) tumor cells from FB103 (diagnosis) and
FB215 (relapse under combined TKI treatment) (Fig. 6g, Supple-
mentary Data 12). This highlighted several key genes previously
reported to be involved in acquired resistance to dabrafenib +
trametinib in melanoma56. Most striking was the downregulation of
dual-specificity phosphatase 6 (DUSP6), which acts as a negative
feedback regulator of pERK and a tumor suppressor in LUAD57–59.
To link this signature to transcriptional changes induced by dab-
rafenib + trametinib treatment, we compared gene expression
between purified tumor cells from sample FB215 exposed to BRAFi
+ MEKi and DMSO control (Fig. 6h). Overall, the differentially
expressed genes were enriched in drug target-proximal genes of
dabrafenib + trametinib. Among the most strongly downregulated
genes were DUSP6, EPHA, FOS, FOSL1, CCND1, and AREG, all directly
involved in MAPK signaling. Interestingly, MAPKi-induced DUSP6
downregulation was independent of a BRAF p.V600Emutation, as it
was observed across five additional LUAD samples with diverse
mutational profiles (Fig. 6i). Finally, we globally compared the
direct transcriptional effects of dabrafenib + trametinib after
ex vivo treatment to the changes in gene expression observed
between diagnosis and relapse in PID028. Interestingly, the strong
downregulation of DUSP6, EPHA, FOS, FOSL1, and AREG were reca-
pitulated in the downregulation of these genes in FB215 compared
to FB103. Thus, the in situ transcriptional adaptation of the
patient’s tumor to clinical treatment, including downregulation of
DUSP6, was recapitulated ex vivo by the patient’s MSE-derived
tumor cells.

Integrated analysis reveals non-genetic MET upregulation as an
actionable drug target
A non-genetic actionable mechanism of acquired resistance to EGFR
inhibition was identified in a 70-year-old female with lung adeno-
carcinoma harboring an EGFR exon 19 deletion and presenting with a
malignant pleural effusion (Fig. 7a; further detailed in the supple-
mentary case study PID038). The patient was initially treated with
osimertinib15,60, and a first pleural effusion sample was profiled
shortly following treatment initiation. After initial response to the
EGFR inhibitor for 12 months, the patient started to show signs of
progression, and two consecutive pleural effusion samples were
analyzed following radiotherapy. All samples had low tumor content
(Fig. 7b), with dynamic changes in the immune compartment
between samples. Comparison of mutational signatures between

Fig. 3 | Tumor cells fromMSE recapitulate transcriptional and genomic aspects
of their primary tumors. a t-distributed stochastic neighbor embedding (t-SNE)
basedon the tumor content-corrected expression of the 5%most variable genes for
149 MSE samples. Dot color indicates tumor type. b Violin plots indicating
expression of selected genes across the cohort grouped by tumor type (from left to
right: LUAD, OV, MESO, BRCA, STAD). These genes were identified by differential
expression (DE) analysis comparing each individual tumor type separately to all
other tumor types, accounting for confounders tumor content, sequencing batch,
and biological sex. c t-SNE projection of integrated transcriptomes of LUAD, OV,
BRCA, MESO, and STAD samples from primary tumors in the TCGA cohort (small
transparent dots, n = 2452) and this MSE cohort (n = 101, big outlined dots). The
accuracy of a 1-nearest neighbor (1-NN) classifier trained on the TCGA data and
evaluated for predicting the MSE tumor types is indicated (see Supplementary
Fig. 10d). d Comparison of mutational profiles measured by FoundationOne CDx

between patient-matched solid biopsies (n = 24 patients) and their corresponding
MSE samples. e Box plots indicating the Jaccard coefficients between mutational
profiles of each pair of samples, stratified by whether samples were patient-
matched (left) ornot (right). P value from two-sided, two-sampleWilcoxon test. Box
plots indicate the median (horizontal line) and 25% and 75% ranges (box), and
whiskers indicate the 1.5× interquartile range above or below the box. Outliers
beyond this range are shown as individual data points. f Concordance of genomic
alterations betweenMSE and patient-matched solid tissue biopsies evaluated for all
actionable alterations measured by FoundationOne (left), only druggable altera-
tions measured by FoundationOne (middle), and druggable alterations measured
by FoundationOne on MSE and a different diagnostic test on the solid tissue (see
Supplementary Data 9). Colors indicate the type of alteration (CNV copy number
variation, RA rearrangement, SUB substitution), and lightness encodes
concordance.
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diagnosis and relapse revealed largely consistent alterations, in
particular the initial EGFR exon 19 deletion was maintained. An
additional EGFR amplification and a p.L654A point mutation of
unknown significance present at baseline were no longer detected at
relapse. No known resistance mutations to osimertinib, such as EGFR
p.C797S, MET exon 14 skipping event, or MET amplification, were
detected (Fig. 7c).

Despite the absence ofMET alterations in the genomic signature,
PCY analysis at relapse (sample FB287) revealed sensitivity to two out
of three tested MET inhibitors (Fig. 7d), while osimertinib scored off-
target. LUAD patients with EGFR driver mutations and selected MET
alterations are eligible for treatmentwith a combination of osimertinib
and a MET inhibitor (capmatinib or tepotinib61–66). To investigate the
observed MET inhibitor sensitivity, we purified tumor cells from
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diagnosis (FB133) and relapse (FB295) by FACS and compared their
transcriptional signatures (Fig. 7e, Supplementary Data 12). This
revealed striking upregulation of MET mRNA expression at relapse.
This transcriptional upregulationwas confirmed at the protein level by
immunohistochemistry against cMET (Fig. 7f, Supplementary Fig. 15),
and coincided with ex vivo sensitivity to osimertinib + capmatinib
combination treatment (Fig. 7g). Based on this combined functional
and molecular evidence, the patient started treatment with osimerti-
nib + capmatinib and achieved a subtotal partial response that lasted
for six months, comparable to previously observed responses of
patients with sensitizing MET alterations as an acquired resistance
mechanism to EGFR-TKIs67.

Taken together, these results indicate that integrative analysis of
multi-omics and functional data of MSE samples can identify clinically
actionable changes in tumor biology that occur as a result of prior
treatment, changes that are not detectable by assessing genomic
alterations alone.

Discussion
We present a deepmolecular, cellular, and functional characterization
of 150 MSE of advanced solid tumors from diverse cancer types,
showcasing the value of MSE-derived measurements for precision
oncology and solid tumor research.

Our unbiased multi-omic integration identified cell type com-
position as a key element of MSE heterogeneity. While the compo-
sition of malignant effusions has been extensively studied in the
context of cytology and diagnostics29, and more recently by
scRNAseq68–73, we find that particularly the non-malignant cellular
MSE composition is highly dynamic, with a switch in the pre-
dominant immune cell type (macrophage versus lymphocyte/gran-
ulocyte) observed in 9 out of 25 sequentially analyzed patients,
warranting caution in the interpretation of one-time MSE snapshots.
Nonetheless, patient-specific transcriptional signatures and drug
responses of cancer cells were preserved. Furthermore, consistent
with previous studies reporting concordant genomic profiles
between MSE and solid tumors32–34, we show that malignant tumor
cells derived from MSE faithfully recapitulate their corresponding
primary solid tumors. Going beyond genomic concordance, inte-
gration of MSE transcriptomes with TCGA data reveals strong con-
cordance of gene expression profiles between primary solid tumors
and MSE. Expression of transcription factors indicative of the tumor
origin could further be confirmed by immunofluorescence and ima-
ging across the cohort. Lastly, we observed good feasibility for our
multi-modal MSE profiling, with 150 out of 261 (57%) MSE samples
successfully profiled. The main dropout reason was too low abun-
dance of viable tumor cells (in 100ml of MSE fluid analyzed), which
could be overcome in future trials by analyzing larger MSE volumes
or enriching tumor cells. Together, our data show that MSE samples
are an easily accessible source of representative tumor cells, enabling

in-depth analysis of cellular state and function for precision
oncology.

Integrating drug sensitivity and baseline MSE gene expression
revealed apan-cancer proliferative signature associatedwith increased
global drug responsiveness. Although there is generally no clear
associationbetween proliferative index and response to antineoplastic
agents across tumor types74, the observed link between proliferation
and drug response may reflect a drug-resistant persister cell state, as
previouslydescribed inNSCLC75.We furthermoreadaptedmultiplexed
high-throughput RNA sequencing (DRUG-seq) previously developed
on cell lines50,76,77 to be compatible with the high-throughput tran-
scriptional profiling of drug responses in primarypatientmaterial. This
enabled us to measure a total of 932 transcriptional profiles, covering
the response of around 7600 genes to 45 drugs across five primary
LUAD samples. Strikingly, the transcriptomic changes observed after
drug treatment were highly enriched in genes indicative of the drug
mode-of-action. And, in a case study of patient diagnosed with BRAF
p.V600Emutant LUAD thatwas sequentially profiled,weobserved that
the ex vivo transcriptional response to targeted BRAF and MEK inhi-
bition recapitulated the in situ transcriptional adaptation of the
patient’s tumor to clinical treatment over time. Our results thus show
feasibility and applicability of primaryMSE samples to investigate drug
mode of action ex vivo, and uncover recurring transcriptional adap-
tations to targeted therapy.

To date, individualized treatment decisions are largely driven
by genomic tumor features. However, out of the 98 genomically
profiled samples, the majority (84 samples) originated from
patients for whom this approach is not applicable, either because
their tumors lacked druggable alterations (n = 72) or because they
had acquired resistance mechanisms not susceptible to targeted
therapies (n = 12). This highlights the clinical need and potential
utility of the multi-modal profiling that we present here, especially
for the majority of patients who lack targeted therapy options. For
one such patient (PID035), who had relapsed after EGFR inhibitor
treatment, we identified an apparent non-genetic MET upregulation
responding ex vivo and clinically to MET inhibition. While MET
expression alone is not considered sufficient to predict response to
capmatinib78, we find that the combination of functional and tran-
scriptional profiling may help identify patients who do benefit from
this therapy also in the absence of a genetic biomarker. In conclu-
sion, we confirmed the feasibility of performing systematic func-
tional andmolecular measurements onMSE, revealing personal and
actionable insights into the biology of advanced solid tumors. We
provide a unique resource of composition, drug response, gene
expression, and mutational data across a clinically annotated pan-
cancer cohort of effusion samples. Moreover, we highlight the uti-
lity of our platform in uncovering determinants of ex vivo drug
response, shedding light on mechanisms of acquired treatment
resistance, and identifying clinically actionable drug targets.

Fig. 4 | Pan-cancer integration of transcriptomics and ex vivo drug responses.
a MOFA Factor 5 plotted against the overall ex vivo ‘sensitivity score’ (fraction of
drugs with RCF >0, n = 149 samples). Linear regression lines with 95% confidence
bands and corresponding P value (two-sided t test) are indicated. b Top-15 path-
ways resulting from gene set enrichment analysis (GSEA) for genes associated with
the sensitivity score. Densities represent the t statistic of the generalized linear
model (edgeR).Colors indicate −log10FDR (Benjamini–Hochberg, BH) of theGSEA.
c Volcano plot for the association between sensitivity score and gene expression.
Genes belonging to the GO term “DNA conformation change” (GO:0071103) are
highlighted in dark red. d Illustration of RNA-seq and drug response integration in
LUAD MSE samples. For each drug, we associated RCF with baseline gene expres-
sion (top arrow; n = 59 samples). In addition, we measured drug-induced tran-
scriptional changes in a subset of LUAD samples (bottom arrow; n = 5 samples).We
then assessed whether the obtained associations or transcriptional changes were
enriched ingenes that are connected to the drug’s primary and secondary target(s).

e Fraction of evaluable drugs for which the drug response-associated genes were
significantly enriched in the drug target-proximal gene set. f BH-corrected
enrichment p value (right-tailed hypergeometric test) for individual drugs in
baseline and DRUG-seq analysis. Drug-target classes are annotated. g Baseline
expression of CDC20 associated with ex vivo response to gemcitabine (top), and
change in CDC20 expression in cells exposed to gemcitabine (bottom). P values in
both panels from DE analysis using the quasi-likelihood F-test implemented in
egdeR. Top: Dots represent 59 biological replicates, linear regression line with 95%
confidence bands is indicated. Bottom: Box-plots as in Fig. 3e. Data from five
independent samples with four technical replicates per sample. h, i Example drug
target-proximal gene networks for vinorelbine (h) and palbociclib (i). Green nodes
denote the drug; every other node corresponds to a gene. Colors indicate log2 fold
change of this gene when comparing drug-treated to DMSO-treated cells. Select
subnetworks and gene names are annotated. Enrichment statistics (right-tailed
hypergeometric test, BH-adjusted) are depicted by mosaic plots (inserts).
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Methods
Study design and participants
This study was conducted as a prospective, non-randomized obser-
vational clinical study with feasibility as the primary outcome.

Treatment decisions during the study were solely based on current
clinical guidelines and the decisions made by the treating physician
and the patient. Any patient with a metastatic solid malignancy from
whom a fluid sample (ascites, pericardial or pleural effusion, washing
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Fig. 5 | Characterizing tumor spheroids in lung adenocarcinoma.
a Morphological composition of tumor cells in LUAD samples, sorted by spheroid
fraction. b Example images (gray: brightfield, pink: DAPI/nuclei) of MSE samples
with low and high fractions of tumor cell spheroids. Images are representative of 59
biological replicates and 400 images each. c Fraction of spheroids stratified by the
response to the treatment following the biopsy, for n = 24 samples obtained prior
to therapy start. d Fraction of spheroids stratified by actionable genomic altera-
tions (BRAF V600E: 11 samples, 3 patients; EGFR: 18 samples, 9 patients; other:
34 samples, 24 patients). P values from Tukey’s honestly significant difference
(HSD) test. e Example images of drug-induced spheroid dissociation (gray:
brightfield, pink: DAPI/nuclei). Images are representative of 59 biological replicates
with 100 images per drug treatment. f Integration of spheroid abundances from
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drugs). TIMP1 (left) represents a gene whose expression was associated with
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analysis of spheroid fractions (see Methods). h Top 10 pathways (GSEA) for genes
associated with spheroid fraction. Density plots and P values as in Fig. 4b. NMD
nonsense-mediated decay, n-t nuclear-transcribed, PTTM protein targeting to
membrane. i Pathway scores (singscore91, see Methods) for mitochondrial trans-
lation (GO:0032543) and cell adhesion (GO:0007155) associated with spheroid
fraction. P value from linear regression (two-sided t test). j Spheroid dissociation in
response to EGFR inhibition in 43 spheroid-containing LUAD MSE samples, strati-
fied by the presence of any mutation in EGFR (EGFRmutant: n = 12 samples from 8
patients, EGFR wild type: n = 31 samples from 20 patients). The values correspond
to themean spheroid dissociation response across four tested EGFR inhibitors (see
Supplementary Fig. 14). All box-plots as in Fig. 3e; P values in (c) and (j) from two-
sidedWilcoxon rank-sum test; P values in (f) and (g) from edgeR quasi-likelihood F-
test with BH correction. Lines and shaded areas in (f) and (i) correspond to a linear
regression fit with 95% confidence bands.
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or any other fluids containing malignant cells) was collected as part of
routine diagnostic or therapeutic procedures at the University Hospi-
tal Zurich (USZ), Spital Uster or Kantonsspital Winterthur was eligible
for the study. Thus, there is no pre-selection bias. Patients were
included if they were older than 18 years and provided written
informed consent either through the USZ general consent (GC) or a
study-specific informed consent form. Patients matching the inclusion

criteria were identified by the cytology team at USZ, who performed
diagnostics on fluid samples and consented by the treating physician.
Over the course of the project (May 2019–January 2023), 261 samples
from 184 patients were included in this study. Follow-up data (see
Supplementary Data 1) were collected as part of clinical routine during
the same time period. The research project was carried out in accor-
dance with the research plan and with principles enunciated in the
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Fig. 6 | Molecular and functional characterization of acquired BRAF +MEK
inhibitor resistance in patient PID028. a Patient PID028’s clinical course (see
Supplementary patient case PID028). b PCY-based cellular and morphological
sample composition over time. c Genomic alterations at diagnosis (FB103), first
relapse (FB209) and second relapse (FB261). d PCY-based ex vivo response to
dabrafenib + trametinib in longitudinal MSE samples. Dots represent technical
replicates (n = 4 for drugs, n = 16 for DMSO). e Dose-response to dabrafenib + tra-
metinib at relapse to targeted therapy (FB215). Dots represent technical replicates
(n = 3), lines and shaded areas indicate the mean and 95% confidence interval per
concentration. f Fraction of phospho-ERK (pERK) positive tumor cells in response
to different doses of dabrafenib + trametinib. Dots represent technical replicates
(n = 3 per concentration and n = 17 for DMSO). Exact P values are provided in the
Source Data. g Comparison of gene expression of FACS-purified tumor cells from
diagnosis (FB103) and relapse to targeted therapy (FB215). Highlighted genes are
implicated in acquired resistance to this therapy in melanoma56. h Drug-target-

proximal gene network for dabrafenib and trametinib. Green dots correspond to
compounds, all other nodes represent genes. Color indicates log2 fold change of
dabrafenib + trametinib vs DMSO in FACS-purified tumor cells from sample FB215.
Enrichment visualized by mosaic plot (insert), P value from right-tailed hypergeo-
metric test. i Change in DUSP6 levels after exposure to dabrafenib + trametinib
across five additional samples measured by DRUG-seq. Values represent average
expression across four replicatewells. P value frompaired two-sidedWilcoxon test.
j Comparison of in situ and ex vivo transcriptional adaptation of tumor cells to
dabrafenib + trametinib. X axis corresponds to log2 fold change of gene expression
in tumor cells taken at diagnosis (FB103) vs relapse (FB215), and y axis to log2 fold
change of gene expression of tumor cells (FB215) treated ex vivo with dabrafenib +
trametinib relative to DMSO. Regression line with 95% confidence bands, Pearson’s
R, and corresponding P value (two-sided t test) are indicated. P values in (d) and (f)
from two-sided Student’s t test comparing treatment to control, no adjustment for
multiple testing. All box plots as in Fig. 3e.

July 2020

PID038
Initial diagnosis
LUAD St IV, 
EGFR exon 19 del

September 2020

FB133

September 2021

Slow progression

May 2022

FB287
FB295

September 2022

Osimertinib: sPR Osimertinib+
Capmatinib: CR

a

b

FB
13

3

FB
28

7

FB
29

50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ab
un

da
nc

e

c

e f g

0.1| 10.1|0.1 1|0.1 1|10

Concentration 
[Capmatinib|Osimertinib µM]

FB287

tissue at
diagnosis

Alterations
Substitution (SUB)
SUB (unknown impact)
Amplification (AMP)
AMP (unknown impact)
Deletion (DEL)

January 2023

Died

PCY, RNA-seq,
FACS + RNA-seq

PCY, RNA-seq,
FACS + RNA-seq
FoundationOne

Pa
no

bi
no

st
at

Be
lin

os
ta

t
El

es
cl

om
ol

C
ab

oz
an

tin
ib

U
lix

er
tin

ib
FO

LF
IR

IN
O

X
C

ap
m

at
in

ib
N

ira
pa

rib
Vi

nb
la

st
in

e
FO

LF
IR

I
Vi

no
re

lb
in

e
To

po
te

ca
n

C
ab

az
ita

xe
l

Ti
pi

ra
ci

l|T
rif

lu
rid

in
e

D
M

SO

O
si

m
er

tin
ib

-0.5

0

0.5

R
C

F

5-
flu

or
ou

ra
ci

l

d

200µm

−5

0

5

10

15

−5 0 5 10 15

Gene expression FB133 (Diagnosis)

G
en

e 
ex

pr
es

si
on

 F
B2

95
 (R

el
ap

se
)

Higher at
diagnosis

Higher at
relapse

MET

FB287 (relapse)

EG
FR

C
D

KN
2A

C
D

KN
2B

C
SF

1R
FG

FR
1

LY
N

M
D

M
4

M
TA

P
N

BN
SD

H
A

W
H

SC
1

W
H

SC
1L

1
W

T1
BC

O
R

C
AR

D
11

IK
ZF

1
M

YC
PM

S2
R

AC
1

R
AD

21
R

AD
51

D
R

IC
TO

R
R

PT
O

R

M
ETAL

K
BR

AF

R
O

S1

KR
AS

FB295 (relapse)

Radio-
therapy

52
 d

ru
gs

8 
dr

ug
s

-0.1

0

0.1

0.2

R
C

F

p=0.05

p = 4.2E-4

p=9.5E-5

p=0.005

Lymphocyte /
Granulocyte polarized
Lymphocyte /
Granulocyte conventional
Macrophage round
Macrophage elongated
Cancer adherent
Cancer colony
Cancer single
Cancer spheroid
Other
Unassigned

MET inhibitor
other target

Fig. 7 | Identification of non-genetic MET upregulation as a drug target.
a Clinical course of patient PID038. See Supplementary patient case PID038 for
details. b PCY-based cellular and morphological sample composition over time.
c Comparison of genomic profile between tissue at diagnosis (solid tumor biopsy)
and after relapse to osimertinib (FB287) measured by FoundationOne CDx. d PCY-
based ex vivo responses of the MSE sample at relapse to osimertinib (FB287) All
drugs with significant on-target effects (RCF >0, p <0.01) are shown, as well as the
previous treatment osimertinib. Exact P values (two-sided Student’s t test, no
adjustment for multiple testing) per drug are provided in the Source Data. Drugs
highlighted in red target MET. e Comparison of gene expression profiles in FACS-

purified tumor cells between FB133 (diagnosis) and FB295 (relapse). MET expres-
sion strongly increased in the relapse sample. f Immunohistochemistry against
cMET at diagnosis (top, cMET intensity 2+ in ~30% of tumor cells) and relapse
(bottom, cMET intensity between 2+ and 3+ in 95% of tumor cells). Image repre-
sents 1.5% of the full scanned area, the full scans are provided in Supplementary
Fig. 15. g Ex vivo response of FB295 to the combination of capmatinib and osi-
mertinib. An on-target effect is observed across concentrations. P values in (d) and
(g) from a two-sample two-sided Student’s t test comparing treatment condition to
DMSO control, no adjustment for multiple testing. All box-plots as in Fig. 3e.
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current version of the Declaration of Helsinki (DoH), the Principles of
Good Clinical Practice (GCP), the Swiss Law and Swiss regulatory
authority’s requirements as applicable. Ethical approval was granted
by the Ethics Committee of Kanton Zurich (CEC Zurich, BASEC-Nr:
2019-01700).

Visualization of cohort statistics. Cohort statistics in Fig. 1b were
visualized using the circlize R package (v.0.4.13)79.

Collection of cells from malignant effusions
100ml of fluid was centrifuged at 200 × g for 5min. The supernatant
was discarded, and the pellet was treated with red blood cell (RBC)
lysis buffer (BioLegend #420302). This step was repeated If the pellet
was still red after RBC lysis. The pellet was then resuspended in growth
media (Gibco RPMI1640 + GlutaMax supplemented with 10% human
type AB serum (PanBiotech PANP30-2502)) and optionally passed
through a 70μmcell strainer to remove large aggregates. Cell number
and viability was determined using a Countess cell counter (Invitro-
gen). Samples that did not contain at least 2 millions of viable cells
were excluded from the study and not further processed.

Purification of cell subsets by FACS
For selected validation samples (FB103 and FB215 in Fig. 6; FB133 and
FB295 in Fig. 7), cell subsets were purified from cryopreserved cells
isolated fromMSE by FACS. After thawing, cells were resuspended in a
blocking buffer (5% (v/v) FBS in PBS) and passed through a 70 μm cell
strainer. Cells were then blocked on ice for 10min, spun down and
resuspended in 100μl of FACS buffer (1% (w/v) BSA in PBS) and stained
using the following antibodies (5μl of antibody per 5 million cells, see
Supplementary Data 2 for details on the antibodies used): CD3 (Alexa
Fluor 488) for T-cells, EpCAM (Alexa Fluor 555) for epithelial/adeno-
carcinoma cells, and CD14 (Alexa Fluor 647) for monocytes/macro-
phages/dendritic cells. Cells were incubated with antibodies on ice for
30min. Then, cells were washed twice with 10ml of cold FACS buffer,
and finally resuspended in 0.5−2ml FACS buffer to reach a con-
centration of ~5 million cells/ml. 1μM SyTOX blue was added right
before sorting to exclude dead cells. Cells were sorted on a BD FACS
Aria Fusion using a 100μm nozzle. We set a very inclusive gate on
forwardand side scatter, and excludeddeadcells basedonSyTOXblue
intensity only. Individual cell populations were then sorted out based
on single positivity for the corresponding markers.

Pharmacoscopy
The term PCY refers to short-term ex vivo culture and drug treatment
of primary patient samples followed by immunohistochemistry,
automated microscopy, and single-cell image analysis26,46,47. The
technology thus encompasses both experimental procedures and
computational analysis. PCY results in quantification of cellular and
morphological sample composition, as well as cell type-resolved drug
responses.

Short-term culture and ex vivo drug treatment of MSE-
derived cells. The cellular component of the MSE sample was dilu-
ted to 0.1–0.2 million cells/ml in growth media (Gibco RPMI1640 +
GlutaMax supplemented with 10% human type AB serum (PanBiotech
PANP30-2502)), and 50μl/well were seeded in CellCarrier 384 Ultra,
clear-bottom, tissue-culture-treated plates (PerkinElmer). Cells were
incubated with 10μM of compound (see Supplementary Data 4) or
matching control (DMSO for small molecules and isotype control for
antibodies) for 24 h at 37॰C, 5% CO2. This drug concentration was
chosen based on prior experience in hemato-oncology26,46,47. After-
wards, themediawas aspirated using amicroplatewasher (Tecan), and
cells were fixed with 20μl/well of a periodate, lysine, formaldehyde
fixative (75mM lysine [Sigma Aldrich L5626-100G], 2.5mg/ml sodium
periodate [Sigma Aldrich 30323-100G] and 1.25% (v/v) formalin

[37% formaldehyde solution, Sigma Aldrich F8775-500ML] in PBS) for
15min at room temperature. The fixative was removed, and 70μl of
PBS/well was added. Plates were then stored in the fridge for up to
2 weeks prior to staining.

Stainingwithfluorescence-labeled antibodies. For staining, PBSwas
aspirated, and cells were blocked, permeabilized and stained for DNA
using 20μl of PBS supplemented with 5% fetal bovine serum (FBS,
Gibco/ThermoFisher 10270106), 4′,6-diamidino-2-phenylindole (DAPI,
BioLegend 422801) and 0.1% (v/v) Triton-X100 (Sigma Aldrich T8787)
for 30min at room temperature. Blocking solution was aspirated, and
cells were stained with fluorescently labeled antibodies (see Supple-
mentaryData 2) diluted in PBS + 10mg/ml bovine serumalbumin (BSA,
Sigma Aldrich A7906) for 1 h at RT or overnight at 4 °C. Antibody-
containing solution was then aspirated, and PBS was added on top of
the cells. Every plate was first stained with a panel of antibodies only in
8wells (SupplementaryData 2) containingnodrugs. If a sampledidnot
contain >2% malignant cells, it was excluded from analysis and not
further processed. Otherwise, the whole plate was stained with an
antibody panel tailored to the respective sample’s tumor marker
expression (Supplementary Data 2).

Automated confocal microscopy. All samples were imaged on an
automated spinning-disk confocal microscope (PerkinElmer Opera
Phenix), using ×20 magnification and 25 images per well to cover the
entire well area. We used five channels with non-overlapping excita-
tion/emission filters to image the following features: Channel 1
(transmission/650–760nm) for brightfield to capture general cell
shape and texture, channel 2 (405 nm/435–480nm) for DAPI/nuclei,
channel 3 (488 nm/500–550nm) for tumor stain, channel 4 (561 nm/
570–630 nm) for a second tumor stain or additional markers, and
channel 5 (640nm/650–760nm) for immune cells (CD45) channels.

Image analysis by CellProfiler. Raw images were first analyzed using
CellProfiler v.2.2.080. Individual cells were detected based on max-
imum correlation thresholding of the DAPI signal. The exact para-
meters of the pipeline were adjusted per sample to account for
differences in nucleus intensity, size and the presence of large spher-
oids. Staining intensities were extracted for the nucleus, and a region
of 12 pixels around the nucleus that was used as a proxy for cyto-
plasmic intensity. For downstream analysis, intensities were log10
transformed and corrected for variation in the local background as
described in ref. 81.

Filtering of segmentation artifacts and removal of outlier wells.
Cells with very low DAPI intensities or abnormally high or low nucleus
areas likely represent segmentation artifacts and were therefore
removed from the analysis by manual gating. In addition, outlier wells
(very low or high total cell numbers, or aberrant staining patterns)
were removed if the observedpatterns couldbe attributed topipetting
mistakes or the presence of large cell clumps by visual inspection.

Training of convolutional neural networks. Five different CNNs were
trained (Supplementary Fig. 1). All of them are based on a ResNet18
architecture and were trained as previously described47,82. CNN 1 was
trained to identify apoptotic cells using brightfield and nuclei (DAPI)
images alone. Here, the training dataset was generated from test stains
(2 wells without any drug treatment per sample), where we defined
apoptotic cells based on the staining intensity of cleaved caspase 3
(clCASP3) and then generated a total of 95,666 2-channel single-cell
crops (150× 150 pixels corresponding to 45 × 45μm) of apoptotic
(n = 44,212) and non-apoptotic (n = 51,454) cells. CNN 2 was trained to
recognize different cell types based on a combination of marker
intensities and cellular morphology using all available channels. Here,
the trainingdatawasgeneratedby cropping 150× 150pixel images and
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then manually assigning them to either lymphocyte/granulocyte,
macrophage, cancer, or other class. A total of 125,959 images across all
samples were curated. CNN 3 classifies tumor cells into single adher-
ent, single non-adherent, spheroid or adherent colony based on all
channels and was trained on 36007 manually curated 150 × 150 pixel
images. CNN 4 is used to distinguish round and elongated macro-
phages using the brightfield, DAPI, and 640 nm (CD45) channels, and
was trained on amanually curated set of 12,846 150 × 150 pixel images.

For all CNNs, 75%of the labeled images were used for training and
25% for evaluation of classification performance.

CNN 1–4 were trained using the deep learning toolbox in Matlab
R2021a and the adaptive learning rate optimization method ‘ADAM’.
Except for CNN 2, equal numbers of images were used per class.
Parameters were set as follows for the different CNNs: For CNN 1 and 2,
the initial learning rate was set to 0.001 and kept constant. A mini-
batch size of 200 and L2 regularization of 0.01 was used, and CNNs
were trained for a total of 5 epochs. CNN 4 was trained the same way,
except that the L2 regularization was increased to 0.1, the networkwas
trained for 10 epochs, and the learning rate was decreased by a factor
of 0.01 after the first 5 epochs. For CNN 3, the initial learning rate was
set to 0.0001 and dropped by a factor of 0.01 every 5 epochs. L2
regularizationwas set to 0.05 and the networkwas trained for a total of
20 epochs with a mini batch size of 150. To strengthen the general-
ization of the networks, images were augmented with random rota-
tions and reflections.

CNN 5 recognizes lymphocyte/granulocytemorphology using the
brightfield, DAPI and 640 nm (CD45) channels and was obtained by
transfer learning of an existing network as described in refs. 47,82. For
this network, 48 × 48 pixel (14.4 × 14.4μm) images were used to
account for the smaller size of lymphocytes and granulocytes, and
4452 images from this dataset were curated for transfer learning.

Classification of cell types. The trained CNNs were used to classify
every single cell in the dataset in a hierarchical manner (Supplemen-
tary Fig. 2a). First, cells were classified as apoptotic or not, and cells
classified as apoptotic with a confidence of at least 0.6 were removed
from the analysis. Next, cells were assigned to one of four main cell
types (Lymphocyte/granulocyte,macrophage,malignant or other). If a
cell could not be confidently assigned to any of these classes (max-
imum confidence <0.6), it was classified as ‘unassigned’ instead.
Finally, each cell was assigned a morphological subtype (polarized or
conventional for lymphocytes/granulocytes, round or elongated for
macrophages and single adherent, single non-adherent, spheroid
or adherent colony for cancer cells). No confidence cutoff was set for
morphological subtypes. Cell compositions per sample that were used
in the MOFA analysis described below were calculated as the mean
fraction of each cell type in DMSO control wells, with the abundance of
the morphological subclasses normalized to the abundance of their
corresponding parent cell type.

Calculation of drug responses. We calculated two different cancer-
specific drug response readouts, RCN and RCF, relative to control.
These are calculated as follows:

RCN= 1−(number of cancer cells in drug-containing well/median
(number of cancer cells in control wells))

RCF = 1−(fraction of cancer cells in drug-containing well/median
(fraction of cancer cells in control wells))

In both cases, a positive score indicates a wanted outcome, i.e. a
reduction in tumor cells. However, the RCN readout only considers
what is happening to the tumor cells and thus assigns positive values to
any cytotoxic treatment, regardless of its specificity tomalignant cells.
On the other hand, RCF only assigns a positive score to compounds
that result in a reduction of malignant cells which exceeds the reduc-
tion in non-malignant cells, and thus prioritizes compounds that spe-
cifically act on malignant cells (see also Supplementary Fig. 4a).

Statistical significance of the ex vivo response was assessed by a two-
sided two-sample t test, comparing each drug to the matching control
(DMSO for small molecules and isotype control for antibodies). In
general, all small molecules were used at 10μM, and antibodies at
10μg/ml. The only exception to thiswas thedrugpanel used in thefirst
15 samples (plate barcode starting with “STP”, see Supplementary
Data 2), where we additionally screened select compounds at 1μM. An
overview of all compounds used in this study is provided in Supple-
mentary Data 4.

For downstream analysis, the drug responses were averaged
across replicate wells and scaled to −1 and 1 per sample. To this end,
any negative value was divided by the absolute value of the most
negative value, and any positive value was divided by the strongest
positive value.

Calculation of spheroid dissociation drug response. Morphological
drug response was calculated on the cancer cells only, thus “fraction”
refers to “the fraction of cells among cancer cells”. To avoid artifacts
arising from calculating fractions from very low cell numbers, we only
included samples in this analysis that had at least 5% spheroids as a
fractionof tumorcells, aswell as 2% spheroidal tumor cells as a fraction
of all cells. We then defined spheroid dissociation as

1−(fraction of cancer cells forming spheroids in drug-containing
well/median(fraction of cancer cells forming spheroids in con-
trol wells))

Thus, a positive value indicates spheroid dissociation, whereas
zero indicates no change and negative values indicate increased frac-
tions of cells in spheroids.

RNA sequencing
RNA extraction for baseline sequencing. A pellet of around 1 million
cells was collected, resuspended in 350μl of TriZol reagent (Ambion,
sold by ThermoFisher 15596026) and stored at −80 °C until extraction.
RNA was extracted using a Zymo DirectZol RNA miniprep kit (Zymo
R2052) or a DirectZol-96 (Zymo R2056) kit for larger batches accord-
ing to the manufacturer’s instructions. RNA concentration and integ-
rity was quantified using a TapeStation with RNA reagents (Agilent
Technologies).

RNA extraction of drug-treated cells. To profile transcriptomes of
drug-treated cells, around 100,000 cells/well were seeded into a Per-
kinElmer cell carrier ultra 96-well plate and incubated with different
small molecules (10μM each) for 24 h. To avoid losing non-adherent
cells, themedia was afterward not completely aspirated (~50μl left per
well), and cells were lysed in 150μl/well TriZol LS reagent (Ambion,
sold by ThermoFisher 10296028). Lysates in TriZol were transferred to
a PCR plate and stored at −80 °C until extraction. RNA extraction was
performed using a DirectZol-96 (Zymo R2056) kit according to the
manufacturer’s instructions.

Preparation and sequencing of RNA-seq libraries. All RNA-seq
libraries were prepared using a customized version of the DRUG-seq
protocol50. Briefly, this protocol consists of reverse transcription (RT)
with barcoded poly-T primers combined with second-strand synthesis
by template-switching, PCR amplification of the pooled cDNA, and
sequencing library construction by tagmentation (Illumina Nextera).
We made the following key modifications to the original protocol: (1)
we changed the reverse transcription (RT) primer sequences to make
them compatible with standard Illumina sequencing primers (see
Supplementary Data 11); (2) we start from purified RNA rather than a
cell lysate, in our hands this resulted in less genomic DNA con-
tamination of the sequencing libraries and simplified sample storage;
(3) we optimized the protocol for ultra-low input samples by using a
Zymo IC column topurify cDNAafterRTandeluting in only 10μl of hot
(80 °C) water, and by using the Nextera XT kit (Illumina FC-131-1096)
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for library preparation; (4) we optimized the unique mapping rates of
our libraries by performing a stringent size selection with one 0.5×
cleanup to remove large fragments followed by two times 0.6×
cleanup using KAPA pure beads (KAPA KK8000) resulting in fragment
sizes between 500–800bp. Library size distributions were measured
using a TapeStation D5000 HS kit, and library concentration was
quantified using a Qubit. Libraries were sequenced at a concentration
of 850 pM on a NextSeq2000 system using a mid-output 100 cycle kit
(Illumina 20046811), with the following read configuration: 80bp for
read 1 to identify the transcript, 20 bp for read 2 to get thewell barcode
and unique molecular identifier (UMI), 6 bp index reads. We used
~4 million reads/sample for baseline RNA-seq samples and 1 million
reads/well for drug-treated samples.

Processing of raw reads for RNA-seq. Raw sequencing reads were
processed using a customized version of the Dropseq toolbox (https://
github.com/broadinstitute/Drop-seq), which is available from
GitHub83 (https://github.com/RebekkaWegmann/drugseq_toolbox).
Briefly, UMIs and well barcodes are extracted from read 2, and well
barcodes are removed if they do notmatch the set of barcodes used in
the experiment (up to 2 mismatches allowed). Reads are thenmapped
to a reference genome (GRCh38 v93) using STAR v.2.4.2, and the
number of UMIs per well barcode and gene are counted. The raw
sequencing data are available from GEO under the series accession
number GSE240953.

Baseline RNA-seq data analysis
QC criteria. Samples were retained if they had >104 UMIs, >5000
genes, and a RIN score of at least 3. Genes were kept if they were
protein-coding or long noncoding RNAs, and detected with at least
two counts in at least five samples. After applying these filtering cri-
teria, the final dataset contained 17046 genes × 145 samples (131
unique samples), with some samples sequenced across multiple bat-
ches to control for batch effects.

Normalization. Raw counts were normalized using the method
implemented in the scran R package (v.1.20.1)84. For downstream
analysis and visualization, a pseudocount of 1 was added to the nor-
malized counts before they were log2 transformed.

Regressing out covariates for visualization. The log2-transformed
normalized expression values were corrected for unwanted covariates
(batch, tumor content) using a linear regression approach as imple-
mented in the removeBatchEffect function implemented in the limmaR
package (v.3.48)85. To preserve biological signals that may be corre-
latedwith these covariates, tumor type, and sample typewere included
in the design parameter.

Visualization of expression profiles using t-SNE. Batch- and tumor
content-corrected expression profiles were visualized using t-SNE. The
embedding was calculated using the R package Rtsne (v.0.15)86–88 with
all parameters set to their default values except perplexity = 5 and
initial_dims = 10.

Identification of disease-specific genes. To identify genes that were
specifically expressed in samples from patients with LUAD, OV, MESO,
BRCA, or STAD, a differential expression (DE) analysis was run com-
paring one tumor type against all others. DE analysis was performed
using a negative binomial generalized linear model (GLM) and a quasi-
likelihood F-test implemented in edgeR (v.3.34.0)89,90. Batch, biological
sex and tumorcontentwere included as covariates in themodel. Genes
that were highly specific were selected for visualization in Fig. 4b.

Integration of drug responses and RNAseq data. Drug responses
(scaled RCF) were integrated with baseline RNA-seq data using a

negative binomial GLM and a quasi-likelihood F-test implemented in
edgeR (v.3.34.0)89,90. The model included batch and tumor content as
unwanted covariates and the scaled drug response as a predictor. Only
genes that were detected in at least 70% of samples were included in
this analysis.

Calculation of pathway scores. All pathway activation scores were
calculated using singscore (v.1.12.0)91 with default parameters. For the
baseline RNA-seq data, the batch- and tumor content-corrected
expression values were used as input for singscore. For DRUG-seq
data, normalized counts were used as input, and pathway scores were
then z-scored across conditions per sample. For visualization of GSEA
enrichments, only genes contributing to the enrichment (“core
enrichment” gene set in clusterProfiler) were used to calculate path-
way scores.

Selection of most variable genes for input to MOFA. To select the
most informative genes for input to MOFA, a global mean-variance
trend was fitted to the covariate-corrected expression values using a
loess estimator. Genes with residual variance exceeding the 0.95
quantile of all residual variances were selected for downstream ana-
lysis. For input into MOFA, a variance stabilizing transformation
(DESeq2 v.1.32.092 varianceStabilizingTransformation) was applied to
the selected gene count,s and the transformed values were then z
scored across samples.

RNA-seq data analysis for drug-treated samples. For RNA-seq ana-
lysis of the drug-treated samples, QC criteria were adjusted to the
lower sequencing depth. Wells were kept if they had more than 104

UMIs and >3000 genes, and genes were kept if they were protein-
coding or long noncoding RNAs and detected at a count of 2 in at least
2 wells per sample. Genes that were not detected across all samples
were discarded. Applying these criteria, the final dimension of the
dataset was 8359 genes × 932 wells, corresponding to 47 drugs mea-
sured with 3–4 replicates across five samples.

Drug-induced transcriptomic changes were assessed using a
negative binomial GLM and a quasi-likelihood F-test implemented in
edgeR (v.3.34.0)89,90. We included the SampleID as a covariate in the
model and compared each drug to its matching control (DMSO for
small compounds, isotype control for antibodies). Only genes detec-
ted in at least 70% of wells were included in the DE analysis.

Enrichment analysis for drug-target-proximal gene sets. Directdrug
targets were obtained from the SITCH database51,52 (http://stitch.embl.
de/, data downloaded on 24 May 2022). Data was filtered to only
include interactions reported for human genes with a combined score
>500. Drug-target-proximal genes were defined as any gene that
functionally interacts with a direct drug target based on the STRING
database. For STRING queries, the STRINGdbR package (v. 2.4.2)53 was
usedwith the string database version 11.5. Interactionswerefiltered for
species - human and a score threshold of 500 was used.

To calculate enrichments of DE genes in drug target-proximal gene
sets, genes were ordered by the edgeR t-statistic (calculated as t.stat =
sign(qlf$table$logFC) * sqrt(qlf$table$F), z = limma::zscoreT(t.stat, df =
qlf$df.total), where qlf is the output of edgeR’s glmQLFTest). P values
were then calculated using a one-sided hypergeometric test for
enrichment of the top and bottom 100 genes among the drug target-
proximal genes.

Drug-target networks were visualized using the R package igraph
(v.1.2.6)93.

Comparison of expression profiles to TCGAdata. The results shown
in Fig. 3c and Supplementary Fig. 10 are based upon data generated by
the TCGA Research Network: https://www.cancer.gov/tcga. Gene
counts for the different tumor types (LUAD, MESO, OV, BRCA, STAD)
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were obtained from the GDC data portal. Any sample that was not a
primary tumor was excluded, resulting in a total of 2452 samples.
Counts were then z-scored per sample, and the genes were subset to
the top 5%most variable genes in theMSE cohort. For the tSNE (Fig. 3c)
and sample-level clustergram (Supplementary Fig. 10b), the TCGA
dataset was combined with the z-scored batch- and tumor content-
corrected expression values of the corresponding tumor types in the
MSE cohort. To assess the accuracy of MSE tumor-type prediction
from the TCGA data, we first reduced the combined gene expression
matrix to 30 dimensions using PCA. We then trained a 1-nearest
neighbor classifier (knn function from the R package class) on the
principal components of the TCGA samples only, and evaluated its
performance on the MSE samples. To create the tumor-type level
comparisons shown in Supplementary Fig. 10a,c, gene expression was
first averaged per tumor type and cohort. After averaging, gene
expression values were z-scored per tumor type.

Mutational profiling by FoundationOne CDx
Mutational profiling was performed using the FoundationOne®CDx
assay94,95, which includes 324 cancer-related genes for the detection of
base exchanges, insertions, deletions, and copy number changes. In
addition, specimens are simultaneously profiled for loss of hetero-
zygosity (LOH), tumor mutational burden (TMB) and microsatellite
instability (MSI). Detailed information is available at

https://www.foundationmedicine.com/genomic-testing/
foundation-one-cdx.

DNA was extracted from formalin-fixed paraffin embedded tissue
cell blocks of MSE samples with at least 10% tumor content with the
Maxwell 16 FFPE Plus LEV DNA Purification Kit (AS1135) according to
the recommendations of the manufacturer. The DNA stock con-
centration was between 50 and 100ng/µL for further analysis. Samples
were assayed by adaptor ligation hybrid capture, performed for all
coding exons of 309 cancer-related genes plus select introns from 34
genes. Sequencingwas performedusing the IlluminaHiSeq instrument
to a median exon coverage ≥500×, and data were analyzed for all
classes of genomic alterations. The computational pipeline used to
analyze sequence patterns used Bayesian algorithms to identify base
substitution mutations, local assembly to identify short insertions and
deletions, comparisons with process-matched normal controls to
determine gene amplifications and homozygous deletions and the
analysis of chimeric read pairs to identify gene rearrangements and
gene fusions94. Using0.8 to 1.1Mbof sequencedDNA for each case, the
TMBwasdeterminedusing the number of somatic base substitution or
indel alterations per Mb after filtering to remove germline and
pathogenic mutations96.

In thismanuscript, the attribution of the definition of “actionable”
to any genomic alteration is based on prior knowledge as reported
in ref. 97.

Visualization of mutational profiles. Mutational profiles were visua-
lized using the oncoPrint function in the R package ComplexHeatmap
(v.2.8.0)98. Alterations were colored by type and somatic impact
(known versus likely, uncertain or unknown) as provided by the
FoundationOne CDx report, which is based on the COSMIC database
(https://cancer.sanger.ac.uk/cosmic).

Calculation of pairwise similarity between mutational profiles.
Pairwise similarity betweenmutational profiles (Fig. 3d) was calculated
using a JC as follows:

JCi,j = number of matching alterations between sample i and
sample j/number of all alterations in sample i or sample j

Here, “alteration” refers to the type of change occurring in a single
gene and sample, which canbewild type, substitution, rearrangement,
amplification, deletion or a combination of several types. “Wild type”
was also considered an alteration for calculating the JC, and only genes

with at least four non-wild type samples were included in this
calculation.

Proteomics analysis of vinorelbine-treated MSE cells
Sample preparation formass spectrometry (MS) analysis. To profile
the proteomes of MSE cells following 24 h of Vinorelbine treatment,
frozen cells from FB002 (BRCA ascites) were thawed. Directly after
thawing, 20 million cells per condition were incubated at a density of
1million cells/ml either with DMSO or 10μM vinorelbine for 24 h.
DMSO-treated cells were used as control. For the protein extraction
following the treatment, cells were split into three replicates for the
vinorelbine treatment and four replicates for the DMSO controls. Cells
were transferred to 50-ml tubes, centrifuged at 500 × g for 4min at
4 °C, and washed with 10ml of cold PBS. After two additional washing
steps with cold PBS, the samples were transferred to 1.5-ml tubes and
flash-frozen in liquid nitrogen after removal of PBS. Frozen cell pellets
were resuspended in 300 µl cold lysis buffer (LB: 1mMMgCl2, 150mM
KCl, 100mM HEPES, pH 7.5), supplemented with 1× complete EDTA
free protease inhibitor (Roche), transferred to bead-beater tubes and
mixed with the same volume of ceramic beads (OMNI International).
Subsequently, cells were lysed at 4 °C using a FastPrep‐24TM 5G bead-
beating grinder (MP Biomedicals) at a speed of 5.5m/sec for 40 sec-
onds. Samples were then transferred to new tubes using a gel-loader
tip and spun down at 800× g for 5min at 4 °C to remove cell debris.
Supernatants were transferred to new pre-cooled tubes, and protein
concentrations were determined using the Pierce BCA Protein Assay
Kit (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Protein concentrations were adjusted to 1 µg/µl in LB
buffer, and 50 µl of lysate per sample were transferred to PCR tube
strips. The stripwas incubated at 99 °C for 5minutes. After incubation,
the samples were cooled down to 4 °C and sodium deoxycholate
(Sigma Aldrich) was added to a final concentration of 5%. Cysteine
residues were reduced with 5mM tris(2-carboxyethyl)phosphine
hydrochloride (Pierce) at 37 °C for 40minutes with shaking at
600 rpm. The reduced cysteines were alkylated by addition of 40mM
iodoacetamide (Sigma Aldrich) at room temperature for 20min.
Samples were diluted with 4 volumes of 100mM ammonium bicar-
bonate (Sigma Aldrich). Proteins were digested with lysyl-
endopeptidase (FUJIFILM Wako Pure Chemical Corporation) and
modified trypsin (Promega) at a 1:100 enzyme to substrate ratio (wt/
wt) at 37 °C on a thermoshaker overnight. Protease digestion was
quenched by adding formic acid (FA, Sigma Aldrich) to a final con-
centration of 4%. Precipitated sodium deoxycholate was removed
using the AcroPrep Advance 96-well plate with 0.2 µm wwPTFE mem-
brane (Pall Life Sciences). Samples were desalted using a 96-well C18-
Spin plate with 7–70 µg capacity (The Nest Group). Peptides were
eluted with 50% acetonitrile and 0.1% FA. Eluates were dried using
vacuum centrifugation and resuspended in 25 µl buffer A with iRT
peptides (1:30) and transferred to 1.5ml Eppendorf tubes. Samples
were vortexed and sonicated for 10minutes and centrifuged at max-
imum speed for 20minutes at 4 °C. 10 µl of the supernatant was
transferred to MS vials. A second centrifugation was carried out at
maximum speed for 5min at 4 °C. The sample acquisition
volume is 2 µl.

LC-MS/MS data acquisition. Peptide digests were analyzed in ran-
domized order on an Orbitrap Fusion Lumos Tribrid MS (Thermo
Fisher Scientific) equipped with a nanoelectrospray ion source and
coupled to an Easy-nLC 1200 system (Thermo Fisher). 2 µg of peptides
were separated at ambient temperature on a 25 cm× 75 µm i.d. analy-
tical columnpackedwith 2.0 µmC18 beads (Acclaim PepMapC18 from
Thermo Fisher) using a linear gradient from 5 to 40% buffer B (B:80%
Acetonitrile and 0.1% formic acid; A: 2% Acetonitrile and 0.1% formic
acid) over 120minutes at a flow rate of 300nl/min. FullMS1 scans were
acquired at a resolution of 120,000 between 350 and 1500m/z. The
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automatic gain control (AGC) target of 8 × 105 and a maximum injec-
tion time of 100ms were used. 41 variable-width windows (Supple-
mentary Data 13) were utilized tomeasure fragmented precursor ions.
DIA-MS2 spectra were acquired at a resolution of 30,000 an AGC tar-
get of 5 × 105, and an injection time of 54ms. The normalized collision
energy was set to 30.

Quantification and statistical analysis. The DIA raw files were sear-
ched using the default directDIA+ pipeline of Spectronaut (Biognosys
AG, version 18.7.240325.55695) against the human UniProt FASTA
(downloaded on 17.07.2020), including the sequence of proteinase K.
Search criteria included carbamidomethylation of cysteine as a fixed
modification, as well as oxidation of methionine and acetylation
(protein N-terminus) as variable modifications. Up to two missed
cleavages were allowed. The dynamic mass tolerance strategy was
applied to calculate the ideal mass tolerances for data extraction, and
no correction factorwas applied (correction factor = 1). The local (non-
linear) regressionmethodwasused for iRT calibrationusing the iRT kit
peptides. The mutated decoy method was used to generate label-free
decoys. The false discovery rate (FDR) was estimated with the mPro-
phet approach99 and set to 1% on precursor and protein level. Protein
inferencewasperformedusing the implemented IDPicker algorithm to
define protein groups100. Protein quantification was performed on the
MS2 level, and the intensities of protein groups were calculated as the
mean of the intensities of the top 3 most abundant peptides. Differ-
ential protein abundance was assessed using limma-trend85. The ana-
lysis was performed on 5458 proteins that were detected across
conditions, had an abundance of at least 3000 in all replicates of at
least one experimental condition, and did not contain any strong
outliers (more than 10-fold difference in abundance within replicates
of one condition).

RT-qPCR of tumor-type-specific genes
Previously extracted RNA was reverse transcribed using the
iScript cDNA synthesis kit (BioRad #1708890) according to the
manufacturer’s instructions. qPCR was performed using a custom
TaqMan array (ThermoFisher #4413262) containing probes for the
following 11 genes of interest: NAPSA (Hs00362192_m1), SFTA2
(Hs01588704_g1), NKX2-1 (Hs00968940_m1), CDH6 (Hs00191832_m1),
EMX2 (Hs00244574_m1), PAX8 (Hs00247586_m1), VTN
(Hs00940758_g1), CLDN15 (Hs00204982_m1),HEG1 (Hs00393516_m1),
GATA3 (Hs00231122_m1), CREB3L4 (Hs00370116_m1). Additionally, the
array contained four endogenous controls: 18 s rRNA
(Hs99999901_s1),GAPDH (Hs99999905_m1), HPRT (Hs99999909_m1),
and GUSB (Hs99999908_m1). Each gene was assayed in triplicate per
sample, using 10 ng of cDNA as a template in each reaction.

Gene expression (delta cycle threshold, dCT) was quantified by
subtracting the mean CT values of the four endogenous controls from
the CT values of the genes of interest.

Multi-omics factor analysis
MOFA was run as implemented in the R package MOFA2 (v.1.2.2) with
default parameters. The input into MOFA was 4 data modalities
(Supplementary Data 6): 1) sample composition (12 variables × 149
samples, Supplementary Data 3); (2) scaled drug responses (101 vari-
ables × 2 readouts × 149 samples, Supplementary Data 5); 3) gene
expression of the 10%most variable genes (853 variables × 131 samples,
Supplementary Data 7); (4) binarized mutational profile (Supplemen-
tary Data 8). Here, only genes with any alteration in at least 10 samples
were included (22 genes, see Supplementary Fig. 6). Mutations were
then further split into the type of alteration (short variant (SV),
amplification (AMP), deletion (DEL), rearrangement (RA) and whether
they have a known somatic impact, resulting in a total of 176 variables
measured across 98 samples. For the mutations, the MOFA likelihood
parameter was set to “bernoulli”, for all others, it was left at the default

(gaussian). The top-15 factors were considered for downstream ana-
lysis. One sample (FB209) for which we only had RNA-seq and muta-
tion data was excluded from MOFA analysis.

Selection of top contributing features per factor for visualization.
For visualization, we selected the top 10 features with the highest
weight per factor. Only features with absolute weights of at least
0.05 were included. To avoid showing only highly correlated fea-
tures from the same data type, we selected at most five features per
data type.

Identifying disease-specific factors. To identify disease-specific fac-
tors, we compared the values of each factor between every single
tumor type and all others. Significance was assessed using a two-sided
two-sampleWilcoxon test. In addition, for each factor and tumor type,
we calculated an area under the receiver operating characteristic curve
(AUROC) using the factor value as a binary classifier distinguishing a
given tumor type from all others. Factors that specifically separate a
certain tumor type from all others will thus have high AUROC values
for this tumor type.

Calculation of patient specificity per factor. Patient specificity per
factor was calculated using a linear regression model. We ran one
model per patient and factor, using binarized patient ID as a predictor
and factor value as the response variable, and then defined patent
specificity as the maximum R-squared obtained per factor. This cor-
responds to the maximum amount of variance that can be attributed
to a single patient per factor.

Immunohistochemistry against c-MET
Immunohistochemical evaluation was performed using anti c-MET
(SP44) rabbit monoclonal primary antibody (catalog # ab227637,
Ventana Medical Systems, Tucson, AZ), dilution 1:50. The staining was
carried out according to the manufacturer’s protocol on the Bench-
Mark XT platform from Ventana utilizing the ultraView detection kit.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw transcriptomics data generated in this study have been deposited
in Gene Expression Omnibus (GEO) under accession code GSE240953.
The raw MS proteomics data generated in this study have been
deposited to the ProteomeXchange Consortium via the PRIDE partner
repository under accession code PXD052582. Publicly available data-
bases: TCGA https://www.cancer.gov/tcga/https://portal.gdc.cancer.
gov/; STRING https://string-db.org/ version 11.5; STITCH http://stitch.
embl.de/ version 5.0 All derived data generated in this study are pro-
vided as Supplementary Data tables. Source data are provided with
this paper.

Code availability
All computational analyses were performed using Matlab R2021a or R
version 4.1.0 with Bioconductor version 3.13101. The DRUG-seq pro-
cessing pipeline to demultiplex RNA-seq reads is available onGitHub83:
https://github.com/RebekkaWegmann/drugseq_toolbox.
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